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Abstract
Bipartite b-matching, where agents on one side of a
market are matched to one or more agents or items
on the other, is a classical model that is used in
myriad application areas such as healthcare, adver-
tising, education, and general resource allocation.
Traditionally, the primary goal of such models is
to maximize a linear function of the constituent
matches (e.g., linear social welfare maximization)
subject to some constraints. Recent work has stud-
ied a new goal of balancing whole-match diver-
sity and economic efficiency, where the objective is
instead a monotone submodular function over the
matching. Basic versions of this problem are solv-
able in polynomial time. In this work, we prove
that the problem of simultaneously maximizing di-
versity along several features (e.g., country of cit-
izenship, gender, skills) is NP-hard. To address
this problem, we develop the first combinatorial
algorithm that constructs provably-optimal diverse
b-matchings in pseudo-polynomial time. We also
provide a Mixed-Integer Quadratic formulation for
the same problem and show that our method guar-
antees optimal solutions and takes less computation
time for a reviewer assignment application. The
source code is made available at https://github.com/
faezahmed/diverse matching.

1 Introduction
The bipartite matching problem occurs in many applications
such as healthcare, advertising, and general resource alloca-
tion. Weighted bipartite b-matching is a generalization of
this problem where each node on one side of the market can
be matched to many items from the other side, and where
edges may also have associated real-valued weights. Ex-
amples of weighted bipartite b-matching include assigning
children to schools [Drummond et al., 2015; Kurata et al.,
2017], reviewers to manuscripts [Charlin and Zemel, 2013;
Liu et al., 2014], and donor organs to patients [Dickerson and
Sandholm, 2015; Bertsimas et al., 2019].

Ahmed et al. [2017] introduced the notion of diverse bipar-
tite b-matching, where the goal was to simultaneously max-
imize the “efficiency” of an assignment along with its “di-
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Figure 1: An illustrative example of single feature diverse matching
(left) versus multi-feature diverse matching (right); here, the match-
ing creates teams with workers from each country and gender.

versity.” For example, a firm might want to hire several
highly-skilled workers, but if that firm also cares about di-
versity it may want to ensure that some of those hires occur
across marginalized categories of employees. They proposed
an objective which combined economic efficiency and diver-
sity demonstrating that, in practice, reducing the efficiency
of a matching by small amounts can often lead to significant
gains in diversity across a matching. However, their formu-
lation was limited to diversity for a single feature. It also
relied on solving a general Mixed-Integer Quadratic Program
(MIQP), which is flexible but computationally intractable.

In this work, we generalize the diverse matching problem
and introduce matchings where each worker has multiple fea-
tures (e.g., country of origin, gender) and our goal is to form
diverse teams with respect to all these features. We found
that the problem with a single feature, studied by Ahmed et
al. [2017], can be reduced to a minimum quadratic cost max-
imum flow formulation and solved in polynomial time by an
existing algorithm [Minoux, 1986]. In contrast, we provide
NP-hardness results for the general case of multiple features.

Our contributions. The paper’s main contributions follow:
• We provide the first pseudo-polynomial time algorithm

for the diverse bipartite b-matching w.r.t. multiple features
problem with class-specific weights.1 The key insight lies
in detecting negative cycles in an auxiliary graph repre-

1That is, under conditions when the cost of assigning all items
from one feature set to an item on the other side of the graph is
the same. This holds when, e.g., one is matching academic papers
to reviewers where each reviewer can specify exactly one field of
expertise and the cost of assigning a paper to any of the reviewers
within the same field is the same but differs across fields.
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sentation, which we use to either provide incremental im-
provements to the incumbent diverse matching or prove
that our negative-cycle-detection algorithms have found
a globally-optimal matching. We also provide a general
MIQP formulation for this problem.

• We then extend the algorithm to the diverse bipartite b-
matching problems with general edge weights, where edge
weights of nodes within a category can be different.

• Lastly, we demonstrate our algorithm’s applicability to
paper-reviewer matching. Our algorithm takes less time to
converge to an optimal solution than the proposed MIQP
approach (using a state-of-the-art commercial solver).

2 Related Work
Matching people to form diverse teams leverages the inter-
section of two past areas of research: the role of team diver-
sity in collaborative work and how diversity among groups of
resources is measured and used to form/match teams. Com-
pared to related work, this paper provides a practical, high-
performing method to perform diverse b-matching that can
enable applications like diverse team formation or diverse re-
source allocation. Below we will use the example of diverse
team formation (for example, in project teams within a com-
pany) to provide a concrete example to place prior work in
context; however, our proposed approach is generally appli-
cable to any diverse matching problem.

In the example of forming teams, the traditional ap-
proach is to use weighted bipartite b-matching (WBM) meth-
ods [Basu Roy et al., 2015]. These methods maximize the to-
tal weight of the matching while satisfying some constraints.
However, there are two major issues with these approaches.
First, it assumes that the value provided by a person in a team
is always fixed and independent of who else is in the team.
This assumption may not hold in many cases. A new team
member may provide more added value to the team if she is
added to a smaller team compared to the case if she is added
to a larger team. This property of diminishing marginal util-
ity can be mathematically captured by a family of functions
called submodular functions, which we define later. Sec-
ond, existing approaches do not account for diversity within a
team, where teams with workers from different backgrounds
may be desirable. For example, different types of worker di-
versity have a direct impact on the success rate of tasks [Ross
et al., 2010]. Likewise, firms with a higher number of em-
ployees with higher education and diversity in the types of
educations have a higher likelihood of innovating [Østergaard
et al., 2011] and increasing revenue for firms [Hunt et al.,
2015]. In this paper, we address both these issues.

Past researchers have generally measured diversity by
defining some notion of coverage—that is, a diverse set is
one that covers the space of available variation. Mathemat-
ically, researchers have done so via the use of submodu-
lar functions, which encode the notion of diminishing re-
turns [Lin and Bilmes, 2012]; that is, as one adds items
to a set that are similar to previous items, one gains less
utility if the existing items in the set already “cover” the
characteristics added by that new item. For example, many
previous diversity metrics used in the information retrieval

or search communities—including Maximum Marginal Rel-
evance (MMR) [Carbonell and Goldstein, 1998] and De-
terminantal Point Processes [Kulesza et al., 2012]—are in-
stances of submodular functions. These functions can model
notions of coverage, representation, and diversity [Ahmed
and Fuge, 2018] and they have been shown to achieve
top results on common automatic document summarization
benchmarks—e.g., at the Document Understanding Confer-
ence [Lin and Bilmes, 2012].

Within matching, our work is closest to that of Ahmed et
al. [2017], which used a supermodular function to propose
a diverse matching optimization method. Other researchers
have also approached similar problems, with diversity either
as an objective or as a constraint. For instance, Gölz and Pro-
caccia [2019] match migrants to localities in a way that max-
imizes the expected number of migrants who find employ-
ment. Benabbou et al. [2018] study the trade-off between
diversity and social welfare for the Singapore housing allo-
cation. They model the problem as an extension of the clas-
sic assignment problem, with additional diversity constraints.
Lian et al. [2018] solve the assignment problem when pref-
erences from one side over the other side are given and both
sides have capacity constraints. They use order weighted av-
erages to propose a polynomial-time algorithm which leads
to high quality and more fair assignments. Agrawal et al.
[2018] show that a simple iterative proportional allocation al-
gorithm can be tuned to produce maximum matching with
high entropy. Finally, Kobren et al. [2019] proposed two
fairness-promoting algorithms for the paper-reviewer match-
ing problem. They demonstrate that their algorithm achieves
higher utility compared to state of the art matching algorithms
that optimize for fairness only. In contrast, our goal is to de-
velop an algorithm for finding the optimal assignment which
maximizes utility as well as diversity along multiple features
as an objective—along with having constraints on workload.

We define a utility function that can be tuned to balance the
diversity and total weight of matching. The diversity function
is inspired by the Herfindahl index [Hirschman, 1964], which
is a statistical measure of concentration and commonly used
in economics. We provide a new algorithm that models the
problem using an auxiliary graph and uses a heuristic im-
provement of the negative cycle detection of Bellman-Ford
by Goldberg and Radzik [1993]2 to find negative cycles and
cancel them on a new graph to obtain an optimal solution for
the original problem.

3 Preliminaries
In this section, we first define the preliminaries for a diverse
matching problem, where workers are to be matched to teams
and each team wants workers belonging to a diverse set of
features. In our problem, we are given a set of features for the
workers. Let F = {f1, · · · , f|F|} denote the feature set for
the workers. An example of a feature set could be {country
of citizenship, gender}. Each feature fk ∈ F has one of

2We used the negative cycle detection algorithm by Goldberg and
Radzik [1993]. Cherkassky et al. [1993] compared the performance
of multiple negative cycle detection algorithms, and the algorithm
by Goldberg and Radzik [1993] was one of the fastest.
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the values Fk = {fk,1, · · · , fk,|Fk|}. Let |Fk,k′ | denote the
number of workers having value fk,k′ for feature fk. The
set of workers is denoted by X = {x1, . . . , xn}. X is par-
titioned into |V| subsets V1, · · · , V|V|, where each subset Vj
corresponds to a feature set vj = {vj,1, · · · , vj,|F|}, where
∀1 ≤ k ≤ |F|, vj,k ∈ Fk.

We wish to form a set of teams {T1, . . . , Tt} of the workers
where each team Ti has a demand of di, specifying the num-
ber of workers that need to be assigned to it. Each worker can
be assigned to at most one team.

The diversity loss of an assignment is denoted by D and
is equal to

∑|F|
k=1 λkDk, where Dk shows the diversity loss

w.r.t. feature fk, and λk ∈ Z≥0 is a constant. Let ci,k,k′
denote the number of workers in Ti having value fk,k′ ∈ Fk

for feature fk. Then, Dk =
∑t

i=1

∑|Fk|
k′=1 c

2
i,k,k′ . The cost

of assigning each worker having value fk,k′ ∈ Fk for feature
fk to team Ti is denoted by ui,k,k′ ∈ Z≥0. We assume all
costs are integers. The total cost of an assignment is TU =∑|F|

k=1 TUk where TUk =
∑t

i=1

∑|Fk|
k′=1 ci,k,k′ · ui,k,k′ .

Our goal is to minimize the objective function which is
equal to D + λ0TU , where λ0 ∈ Z≥0. To understand why
minimizing Dk makes an assignment more diverse w.r.t fk,
consider Figure 1. In the left assignment, D2 = 8, and in
the right assignment D2 = 4, and the right assignment is
more diverse w.r.t f2, i.e. gender. By setting λ parameters,
we assume that the relative importance between factors is not
qualitative and can be quantified. Next, we provide Theorem
1, which shows that this problem is NP-hard.

Theorem 1. Minimizing the supermodular diversity loss
function w.r.t multiple features is NP-hard.

Proof. We show a reduction from a variation of 3-COLOR
problem which is as follows: given a graph G = (V,E) with
n vertices, is there a coloring with n1 vertices of color c1,
n2 vertices of color c2, and n3 vertices of color c3, such that
no two adjacent vertices receive the same color, and all the
vertices are colored? It could be shown this variation is NP-
hard by a reduction from classic 3-COLOR problem.

The reduction from 3-COLOR to multiple-attribute diverse
matching is as following: In 3-COLOR, assign a feature fk to
each edge ek = (vk1

, vk2
) ∈ E, and a worker to each vertex.

Let fk,i denote the value of fk for the worker corresponding
to vi ∈ V . Let fk,i = i if i 6= k1, k2. Otherwise, let fk,i =
0. The goal is to form three teams T1, T2, T3 with demands
d1 = n1, d2 = n2, d3 = n3, respectively. We assume that all
the costs of assigning workers to the teams are zero, therefore
the objective function is to minimize the total diversity loss.
Consider an arbitrary edge ek = (vk1

, vk2
). If the endpoints

of ek belong to different teams, fk contributes n1 + n2 + n3
to the objective function since all the workers inside a team
have different values for fk. Otherwise, it contributes n1 +
n2 +n3− 2 + 22 since workers corresponding to vk1

, vk2
are

the only workers having the same value for fk inside a team.
If the cost of the optimal solution for the diverse matching
problem is (n1 +n2 +n3) · |E|, there does not exist a pair of
workers in a team where the vertices corresponding to them
are neighbouring in G. Otherwise if the cost of the optimal

country1, g1 country1, g2 country2, g1 country2, g2

T0 w0,1 w0,2 w0,3 w0,4

T1 w1,1 w1,2 w1,3 w1,4

T2 w2,1 w2,2 w2,3 w2,4

T3 w3,1 w3,2 w3,3 w3,4

Table 1: Matrix representation of three teams and workers from two
countries and two genders. Dummy team T0 accommodates unas-
signed workers. Arrows represent a local exchange.

solution is more than (n1 + n2 + n3) · |E|, the 3-COLOR
instance is infeasible.

We are interested in solving this NP-hard problem. We
begin by presenting two different representations of instances
of the problem: one in matrix form (used for expositional
ease), and the other in graph form (used to build our optimal
diverse matching algorithm in Section 4).

Matrix Representation. An example of matrix representa-
tion with three teams and two countries and two genders is
shown in Table 1. Each column corresponds to a feature set
and each row corresponds to a team. Entry wi,j shows the
number of workers with feature set vj assigned to Ti. We
introduce a dummy team T0, and w0,j shows the number of
workers with feature set vj who are not assigned to any team.

Matching Representation. In this representation, a bipar-
tite graph G = (X ∪ T , E) is given. The nodes in X cor-
respond to the workers, and are partitioned into |V| subsets
where each subset corresponds to a feature set. Each vertex
in T corresponds to a team in {T0, T1, T2, · · · , Tt}. The as-
signment of workers to teams forms a b-matching, where the
degree of each node Ti for 1 ≤ i ≤ t is di. All workers who
are not assigned to any team T1, · · · , Tt get assigned to the
dummy team T0. Degree of each node x ∈ X is exactly one.

Local Exchange. A local exchange happens when a group
of teams decides to transfer one or more workers between
each other while maintaining the total number of workers in
each of them. The exchange is done in a way that the initial
demands of all the teams are fulfilled. Arrows in Table 1 show
a local exchange in a matrix representation.

In this exchange, one worker from V2 is moved from T3 to
T1. Two workers from V1 are moved. One is moved from T1
to T2, and the other one is moved from T2 to T3. The set of
edges of local exchange in a matrix representation is called a
cycle. The source-transitions of a cycle are the cells without
any input edges, and the sink-transitions are the cells without
any output edges. In Table 1, the cells corresponding to w3,2

and w1,1 are source-transitions, and the cells corresponding
to w1,2 and w3,1 are sink-transitions.

Figure 2 shows the same local exchange operation using a
matching representation. In this figure, the black matching
shows the initial assignment, and the dotted matching shows
the assignment after the exchange operation is done.

Gain of a local exchange. Our goal is to minimize the ob-
jective function f , by doing some local exchanges. To find
out, we first calculate the marginal gain from a given ex-
change operation which is the difference between the objec-
tive values before and after a local exchange. In order to sim-
plify this concept, we use the following definition:
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country1 country2

T0 c0,1,1 = w0,1 + w0,2 c0,1,2 = w0,3 + w0,4

T1 c1,1,1 = w1,1 + w1,2 c1,1,2 = w1,3 + w1,4

T2 c2,1,1 = w2,1 + w2,2 c2,1,2 = w2,3 + w2,4

T3 c3,1,1 = w3,1 + w3,2 c3,1,2 = w3,3 + w3,4

Table 2: Matrix representation embedding w.r.t country.

g1 g2

T0 c0,2,1 = w0,1 + w0,3 c0,2,2 = w0,2 + w0,4

T1 c1,2,1 = w1,1 + w1,3 c1,2,2 = w1,2 + w1,4

T2 c2,2,1 = w2,1 + w2,3 c2,2,2 = w2,2 + w2,4

T3 c3,2,1 = w3,1 + w3,3 c3,2,2 = w3,2 + w3,4

Table 3: Matrix Representation Embedding w.r.t to gender.

Embedding of Matrix Representation. Consider a given
matrix representation M , it can be embedded into a ma-
trix Mk for a fixed feature fk in the following way: all
the columns in M corresponding to the same value fk,k′ of
fk, are combined into a single column in Mk. For exam-
ple, embedding of the matrix representation in Table 1 into
M1,M2 w.r.t. the features country and gender are shown
in Tables 2 and 3. Since in M1, the number of people
assigned from each country to each team is not changed,
∆1 = ∆(λ0 · TU1 + λ1D1) = 0. According to M2,
∆2 = ∆(λ0 ·TU2+λ2D2) = λ0

(
−u3,2,2+u1,2,2−u1,2,1+

u3,2,1
)
+λ2

(
(c3,2,2−1)2−(c3,2,2)2+(c1,2,2+1)2−(c1,2,2)2+

(c1,2,1 − 1)2 − c21,2,1 + (c3,2,1 + 1)2 − c23,2,1
)
.

It can be seen that the contribution of the cells which are
not source-transition or sink-transition to the gain of a local
exchange is zero (all the cells in the local exchange in Table 2,
and the node corresponding to c2,2,1 in M2). If the net gain,
i.e. ∆1 + ∆2, is negative, then the local exchange can be
considered beneficial and we can transfer the workers.

4 Negative-Cycle-Detection-based Algorithms
In this section, we explain our algorithm for finding the opti-
mum assignment. First, we build an auxiliary graph G′. For
each team Ti ∈ {T0, · · · , Tt}, there is a switch in G′ with |V|
input ports, and |V| output ports. Each port is a node in G′,
and each switch is a directed bipartite graph, with edges going
from its input ports (nodes) to its output ports. In Figure 3,
each box is a switch. Inside a switch Ti, there is a directed
edge from each input port to each output port. If the directed
edge is connecting two ports such that their corresponding
combinations of features do not have the same value for any

!"#$!

!"#$"%&'()*+#

!"#$%

Figure 2: Local exchange operation (in matching representation).

Algorithm 1: Find optimal diverse b-matching
Input : Directed weighted graph G′, initial feasible

b-matching Q which satisfies team demands.
Output: Optimal diverse b-matching
while ∃ a negative cycle C ∈ G′ do

// Perform a local exchange operation along C;
for e ∈ C do

// Assume edge e is from output port Oi1
j of team

Ti1 to input port Ii2j of another team Ti2 ;
// Move one worker with feature set
vj = {f1,k′1 , · · · , f|F|,k′|F|} from team Ti1 to
team Ti2 :
∀k ∈ {1, · · · , |F|}:
ci1,k,k′k− = 1, ci2,k,k′k+ = 1;
Update weight of edges of G′ w.r.t to the new
values of ci1,k,k′k , and ci2,k,k′k ;

features, the weight of this edge is equal to zero. Otherwise,
per each feature fk that has the same value, −2λk is added to
the weight of this edge.

The reason behind assigning these weights to the edges is
to make sure in a local exchange, considering a fixed fea-
ture fk, the cells which are not a source-transition or a sink-
transition w.r.t. Mk, have zero contribution to ∆(Dk).

For each pair of teams Ti1 and Ti2 where i1 6= i2, and for
each feature combination vj , there is a directed edge from
output port Oi1

j of switch Ti1 to the input port Ii2j of switch
Ti2 , and weight of this edge captures the difference in the
objective function when in the matrix representation a person
in column Vj (with feature set vj) is moved from Ti1 to Ti,2.

Each cycle in this graph corresponds to a cycle in a matrix
representation and local exchanges along them have the same
gain. Figure 3 shows a cycle which is corresponding to the
cycles in Table 1 and Figure 2.

After constructing the auxiliary graph, we run Algorithm 1.
Algorithm 1 moves workers from one team to another if it
detects a negative cycle.

Algorithm 1 takes as input an initial feasible solution Q
as input. To find Q, we first find a feasible solution, which
satisfies all the demand constraints. In order to find an initial
feasible solution, in each iteration, consider the first subset of
workers in the the bipartite graph G (Vj) with at least one un-
assigned worker, and the first team (Ti) such that the number
of workers assigned to it is less than its demand (In the first
iteration, we start with V1, T1, and all the workers are un-
assigned). Assign un-assigned workers from Vj to Ti, until
either demand of Ti is fully satisfied, in this case, move to the
next team (i = i+1), or all the workers from Vj are assigned,
then let j = j+ 1. Repeat this procedure until all the demand
constraints are satisfied. Time complexity of this procedure
is O(|V|+ t).

In Algorithm 1, any negative cycle detection algorithm can
be used to detect negative cycles in G′. We use a heuris-
tic improvement of Bellman-Ford proposed by Goldberg and
Radzik [Goldberg and Radzik, 1993] in our experiments.
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Figure 3: A local Exchange in graph representation.

country1, g1 country1, g2 country2, g1 country2, g2
T0 w0,1 w0,2 w0,3 w0,4

T1 w1,1 w1,2 w1,3 w1,4

T2 w2,1 w2,2 w2,3 w2,4

T3 w3,1 w3,2 w3,3 w3,4

Table 4: Maximal cycle decomposition

5 Proof of Optimality
In this section, we prove that Algorithm 1 gives the optimum
solution for diverse bipartite b-matching problem.

Assume after the algorithm ends, the final assignment is a
local optimum P , and the optimum solution is P ∗. Consider
the matching representations of P and P ∗. Since all the nodes
in P and P ∗ are matched, the symmetric difference of P and
P ∗ (P ⊕ P ∗) can be decomposed into a set of alternating
even cycles. Each local exchange along an alternating cycle
corresponds to a cycle in the matrix representation.

Before proving Thm. 2, we need the following definitions:

Maximal Cycle. A cycle y in a matrix representation M
is maximal if its source-transitions and sink-transitions are
source-transition and sink-transition w.r.t all the edges in M
as well. For example, consider Table 4. Let’s call the dot-
ted cycle yg , the dashed cycle yr, and the solid-line cycle
yb. yg has two source-transitions w1,1, w0,3, and it has two
sink-transitions w0,1, w1,3. Since there are no edges going
out of w1,3, w0,1, and no edges going into w0,3, w1,1, yg is a
maximal cycle. Cycles yr, yb are maximal cycles as well.
Therefore, {yg, yb, yr} gives a maximal cycle decomposi-
tion for M . However, if we consider embedding of M w.r.t
gender (M2), then yr is not a maximal cycle anymore, and
{yg, yr ∪ yb} gives a maximal cycle decomposition w.r.t M2

and M1(embedding w.r.t countries). A cycle is called all-
maximal cycle if it is maximal w.r.t all the matrix representa-
tions M1, · · · ,M|F|. In this example, {yg, yr ∪ yb} gives an
all-maximal cycle decomposition.

Lemma 1. The set of all the edges of P ⊕P ∗ can be decom-
posed into a set of all-maximal cycles. 3

Theorem 2. Algorithm 1 finds the global optimum for the
diverse b-matching problem.

Proof. Let f(P ) show the value of the objective function for

3Due to space constraints, we omit this proof to the full version.

the assignment P . f(P ∗)− f(P ) < 0 therefore:
f(P

∗
)− f(P ) = gain(y

′
1,1) + gain(y

′
2,2) + · · ·+ gain(y

′
`′,`′ ) < 0

Where y′k (1 ≤ k ≤ `′) is the kth cycle in the all-maximal
cycle decomposition, and y′k,k is applying the local exchange
of the cycle y′k at step k. The initial step is the assignment P .
Since f(P ∗) − f(P ) < 0, there must be a maximal cycle y′g
such that gain(y′g,g) < 0. We wish to show gain(y′g,1) < 0,
which implies starting from the initial assignment P , a local
exchange can be done with a negative gain, and P is not a
local optimum which is a contradiction.

Let D(y′g,g), U(y′g,g) denote respectively the change in the
diversity loss, and the change in the utility when applying a
local exchange y′g in step g. Let Dfk(y′g,g), Ufk(y′g,g) denote
the change in the diversity loss w.r.t the feature fk, when ap-
plying y′g,g . Therefore:

gain(y′g,g) =
∑
k∈|F|

(
Dfk(y′g,g) + Ufk(y′g,g)

)
Lemma 2 shows if Dfk(y′g,g) < 0, then Dfk(y′g,1) < 0. As
a result, D(y′g,g) < 0 implies D(y′g,1) < 0. It is easy to see
that U(y′g,g) = U(y′g,1). Therefore, gain(y′g,g) < 0 implies
gain(y′g,1) < 0, and the proof is complete.

Lemma 2. If Dfk(y′g,g) < 0, then Dfk(y′g,1) < 0. 3

Theorem 3. The running time of the algorithm is O((λmax ·
|F| · n2 + λ0U) · |V|2 · t2(|V| + t)), where U is the max-
imum cost of an initial feasible b-matching and λmax =
max{λ1, · · · , λ|F|}.

In order to prove this theorem, first we show the following
lemmas hold.
Lemma 3. The number of iterations of our algorithm is at
most λmax · |F| · n2 + λ0U . 3

Lemma 4. The complexity of each iteration of the algorithm
is O(|V|2 · t2(|V|+ t)). 3

Combining Lemma 3 with Lemma 4, and considering
O(|V|+ t) time complexity for finding an initial feasible so-
lution, yields Theorem 3.

6 Diverse Weighted Bipartite b-Matching
In this section, we extend our algorithm to solve the case
where the cost of assigning workers from the same feature set
to a team can be different. First, in each switch we put input
and output ports for each worker. Inside each switch, there
is a complete bipartite graph from input ports to the output
ports. Consider an edge between an input port to an output
port corresponding to workers xi and xj . Per each feature fk
where xi, xj have the same values for fk, −2λk is added to
the weight of the edge between xi, xj .

Consider an edge from output port xi1k of switch Ti1 to in-
put port xi2k of switch Ti2 , where xk ∈ Vj . The weight of this
edge is equal to the change in the objective function by mov-
ing one worker from Vj out of Ti1 , and adding that worker to
Ti2 . The proof of the following theorem is similar to Thm. 3.
Theorem 4. The running time of the algorithm for general
weights isO((λmax · |F| · n2 + λ0U) · n2 · t2(n+ t)), where
U is the maximum cost of any feasible b-matching.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

7



7 Experimental Validation & Discussion
To demonstrate the effectiveness of the proposed method, we
apply it to a dataset of reviewer paper matching. First, we find
the optimal solution for multi-feature reviewer paper match-
ing and compare it to the single feature diverse matching
method. We also provide the MIQP formulation of the same
problem based on literature and show how our algorithm is
faster to the Gurobi based MIQP solver.

For the reviewer assignment problem, where each reviewer
has multiple features, we want to match each paper with re-
viewers who are not only from different expertise areas (clus-
ters), but also belong to different genders. We use the multi-
aspect review assignment evaluation dataset [Karimzadehgan
and Zhai, 2009], a benchmark dataset from UIUC. It contains
73 papers accepted by SIGIR 2007, and 189 prospective re-
viewers who had published in the main information retrieval
conferences. The dataset provides 25 major topics and for
each paper in the set, an expert provided 25-dimensional la-
bel on that paper based on a set of defined topics. Similarly
for the 189 reviewers, a 25-dimensional expertise representa-
tion is provided.

To compare our method (Algorithm 1) with a baseline,
we formulate a multi-feature MIQP variant of our problem,
which is an extension of the single-feature formulation pro-
vided in [Ahmed et al., 2017] and is given by:

minλ0

|F|∑
k=1

t∑
i=1

|Fk|∑
k′=1

ui,k,k′ · ci,k,k′ +

|F|∑
k=1

λk

t∑
i=1

|Fk|∑
k′=1

c2i,k,k′

|F|∑
k=1

|Fk|∑
k′=1

ci,k,k′ = di, ∀1 ≤ i ≤ t

t∑
i=0

ci,k,k′ = |Fk,k′ |, 1 ≤ k ≤ |F|, 1 ≤ k′ ≤ |Fk|

To set up the graph for our method, we first cluster the review-
ers into 5 clusters based on their topic vectors using spectral
clustering. To calculate the relevance of each cluster for any
paper, we take the average cosine similarity of label vectors of
reviewers in that cluster and the paper. We set the constraints
such that each paper matches with exactly 4 reviewers, and no
reviewer is allocated more than 1 paper. To increase dataset
size, we double the number of reviewers by creating a copy of
each reviewer. As the original dataset lacks gender informa-
tion, we added a new feature to each reviewer in this dataset
by randomly adding one of two gender labels (Male or Fe-
male) to each reviewer. We set λ0 = λ1 = λ2 = 1 for our
experiments. Note that by varying these parameters, one can
create the Pareto optimal frontier too.

We run the negative cycle detection algorithm, and the
MIQP solver using Gurobi to find the optimum solution. On
converging to the optimal solution, we find that all 73 papers
receive two male reviewers and two female reviewers, which
shows that the method was capable of balancing gender di-
versity. Each paper receives reviewers from four different
clusters. If we only optimize for cluster diversity, it is pos-
sible that the gender ratio for individual paper gets skewed.
When we run the same model with λg = 0 (no weight to gen-
der diversity), we find that out of 73 papers, 12 papers receive

# Papers # Reviewers MIQP Time (s) Our Method Time (s)

03 378 24.68 0.18
13 378 3979.90 14.84
23 378 14400.00 122.96
33 378 14400.00 400.56
43 378 14400.00 825.95
53 378 14400.00 2837.15
63 378 14400.00 5453.58
73 378 14400.00 11040.55

Table 5: Comparison of MIQP and our method for UIUC reviewer
dataset with each paper needing 4 reviewers.

all four reviewers of the same gender and 41 papers receive
three reviewers of the same gender. Hence, only 27.3% teams
of reviewers are gender balanced. However, one should note
that when we do not keep gender as an objective, the resultant
allocation is random and different skewness can be observed
in different runs based on the initial solution.

Finally, we compare the timing performance of our algo-
rithm with MIQP by changing the number of papers that need
to be reviewed on a Dell XPS 13 laptop with i7 processor.
For MIQP, we set a maximum run time of four hours (14400
seconds) for Gurobi solver, at which we report the current
best MIQP solution. Table 5 shows that for all cases with the
number of papers greater than 13, MIQP does not converge
within four hours, while our method finds the optimum so-
lution in lesser time. Interestingly, MIQP current solutions
are found to be the same as the optimum solution found by
our method, which shows that for this application, MIQP was
able to search the solution but it was not able to prove that
the solution is optimum. In contrast, our method finds the
solution faster as well as guarantees that it is optimum.

8 Conclusion & Future Research
In this paper, we proposed the first pseudo-polynomial time
algorithms for multi-feature diverse weighted bipartite b-
matching—a problem that we also showed is NP-hard. We
propose an algorithm that not only guarantees an optimal so-
lution but also converges faster than a proposed approach us-
ing a black-box industrial MIQP solver. We demonstrated
our results on a dataset for paper reviewer matching. Future
work could explore the extension of this method to online di-
verse matching [Dickerson et al., 2019], where vertices arrive
sequentially and must match immediately; this has direct ap-
plication in advertising, where one could balance notions of
reach, frequency, and immediate monetary return. Exploring
connections to fairness in machine learning [Grgić-Hlača et
al., 2018] and hiring [Schumann et al., 2019] by way of di-
versity are also of immediate interest.
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