
Certified Neural Network Watermarks with Randomized Smoothing

Arpit Bansal * 1 Ping-yeh Chiang * 1 Michael Curry 1 Rajiv Jain 2 Curtis Wigington 2 Varun Manjunatha 2

John P Dickerson 1 Tom Goldstein 1

Abstract
Watermarking is a commonly used strategy to
protect creators’ rights to digital images, videos
and audio. Recently, watermarking methods
have been extended to deep learning models –
in principle, the watermark should be preserved
when an adversary tries to copy the model.
However, in practice, watermarks can often be
removed by an intelligent adversary. Several
papers have proposed watermarking methods that
claim to be empirically resistant to different types
of removal attacks, but these new techniques
often fail in the face of new or better-tuned
adversaries. In this paper, we propose a certifiable
watermarking method. Using the randomized
smoothing technique proposed in Chiang et al.,
we show that our watermark is guaranteed to
be unremovable unless the model parameters
are changed by more than a certain `2 threshold.
In addition to being certifiable, our watermark
is also empirically more robust compared to
previous watermarking methods. Our experi-
ments can be reproduced with code at https:
//github.com/arpitbansal297/
Certified_Watermarks

1. Introduction
With the rise of deep learning, there has been an extraordi-
nary growth in the use of neural networks in various com-
puter vision and natural language understanding tasks. In
parallel with this growth in applications, there has been ex-
ponential growth in terms of the cost required to develop
and train state-of-the-art models (Amodei & Hernandez,
2018). For example, the latest GPT-3 generative language
model (Brown et al., 2020) is estimated to cost around 4.6

*Equal contribution 1University of Maryland, College
Park 2Adobe Research, USA. Correspondence to: Arpit
Bansal <bansal01@umd.edu>, Ping-yeh Chiang <pchi-
ang@cs.umd.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

million dollars (Li, 2020) in TPU cost alone. This does not
include the cost of acquiring and labeling data or paying
engineers, which may be even greater. With up-front in-
vestment costs growing, if access to models is offered as
a service, the incentive is strong for an adversary to try to
steal the model, sidestepping the costly training process.
Incentives are equally strong for companies to protect such
a significant investment.

Watermarking techniques have long been used to protect the
copyright of digital multimedia (Hartung & Kutter, 1999).
The copyright holder hides some imperceptible informa-
tion in images, videos, or sound. When they suspect a
copyright violation, the source and destination of the mul-
timedia can be identified, enabling appropriate follow-up
actions (Hartung & Kutter, 1999). Recently, watermarking
has been extended to deter the theft of machine learning
models (Uchida et al., 2017; Zhang et al., 2018). The model
owner either imprints a predetermined signature into the
parameters of the model (Uchida et al., 2017) or trains the
model to give predetermined predictions (Zhang et al., 2018)
for a certain trigger set (e.g. images superimposed with a
predetermined pattern).

A strong watermark must also resist removal by a motivated
adversary. Even though the watermarks in (Uchida et al.,
2017; Zhang et al., 2018; Adi et al., 2018) initially claimed
some resistance to various watermark removal attacks, it was
later shown in (Shafieinejad et al., 2019; Aiken et al., 2020)
that these watermarks can in fact be removed with more
sophisticated methods, using a combination of distillation,
parameter regularization, and finetuning. To avoid the cat-
and-mouse game of ever-stronger watermark techniques
that are only later defeated by new adversaries, we propose
a certifiable watermark: unless the attacker changes the
model parameters by more than a certain `2 distance, the
watermark is guaranteed to remain.

To the best of our knowledge, our proposed watermarking
technique is the first to provide a certificate against an `2
adversary. We also analyzed whether `2 adversary is a rea-
sonable threat model as well as the magnitude of appropriate
defense radius. Surprisingly, we find our certified radius
to be quite substantial relative to the range of meaningful
radius that one could certify. Additionally, we empirically

ar
X

iv
:2

20
7.

07
97

2v
1 

 [
cs

.L
G

] 
 1

6 
Ju

l 2
02

2

https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks


Certified Neural Network Watermarks with Randomized Smoothing

find that our certified watermark is more resistant to pre-
viously proposed watermark removal attacks (Shafieinejad
et al., 2019; Aiken et al., 2020) compared to its counterparts
– it is thus valuable even when a certificate is not required.

2. Related Work
Watermark techniques (Uchida et al., 2017) proposed
the first method of watermarking neural networks: they em-
bed the watermark into the parameters of the network during
training through regularization. However, the proposed ap-
proach requires explicit inspection of the parameters for
ownership verification. Later, (Zhang et al., 2018; Rouhani
et al., 2018) improved upon this approach, such that the
watermark can be verified through API-only access to the
model. Specifically, they embed the watermark by forcing
the network to deliberately misclassify certain “backdoor”
images. The ownership can then be verified through the
adversary’s API by testing its predictions on these images.

In light of later and stronger watermark removal techniques
(Aiken et al., 2020; Wang & Kerschbaum, 2019; Shafieine-
jad et al., 2019), several papers have proposed methods
to improve neural network watermarking. (Wang & Ker-
schbaum, 2019) propose an improved white-box water-
mark that avoids the detection and removal techniques from
(Wang & Kerschbaum, 2019). (Li et al., 2019) propose using
values outside of the range of representable images as the
trigger set pattern. They show that their watermark is quite
resistant to a finetuning attack. However, since their trigger
set does not consist of valid images, their method does not
allow for black-box ownership verification against a realistic
API that only accepts actual images, while our proposed
watermark is effective even in the black-box setting.

(Szyller et al., 2019) proposed watermarking methods for
models housed behind an API. Unlike our method, their
method does not embed a watermark into the model weights
itself, and so cannot work in scenarios where the weights
of the model may be stolen directly, e.g. when the model is
housed on mobile devices.

Finally, (Lukas et al., 2019) propose using a particular type
of adversarial example (“conferrable” adversarial examples)
to construct the trigger set. This makes the watermark
scheme resistant even to the strongest watermark removal
attack: ground-up distillation which, starting from a ran-
dom initialization, trains a new network to imitate the stolen
model (Shafieinejad et al., 2019). However, for their ap-
proach to be effective, they need to train a large number of
models (72) on a large amount of data (e.g. requiring CINIC
as opposed to CIFAR-10). While our approach does not
achieve this impressive resistance to ground-up distillation,
it is also much less costly.

Watermark removal attacks However, one concern for
all these watermark methods is that a sufficiently motivated
adversary may attempt to remove the watermark. Even
though (Zhang et al., 2018; Rouhani et al., 2018; Adi et al.,
2018; Uchida et al., 2017) all claim that their methods are
resistant to watermark removal attacks, such as finetuning,
other authors (Aiken et al., 2020; Shafieinejad et al., 2019)
later show that by adding regularization, finetuning and
pruning, their watermarks can be removed without compro-
mising the prediction accuracy of the stolen model. (Wang
& Kerschbaum, 2019) shows that the watermark signals
embedded by (Uchida et al., 2017) can be easily detected
and overwritten; (Chen et al., 2019) shows that by leverag-
ing both labeled and unlabeled data, the watermark can be
more efficiently removed without compromising the accu-
racy. Even if the watermark appears empirically resistant
to currently known attacks, stronger attacks may eventually
come along, prompting better watermark methods, and so
on. To avoid this cycle, we propose a certifiably unremov-
able watermark: given that parameters are not modified
more than a given threshold `2 distance, the watermark will
be preserved.

Certified defenses for adversarial robustness Our work
is inspired by recent work on certified adversarial robustness,
(Cohen et al., 2019; Chiang et al., 2019; Wong & Kolter,
2017; Mirman et al., 2018; Weng et al., 2018; Zhang et al.,
2019; Eykholt et al., 2017; Levine & Feizi, 2019). Certified
adversarial robustness involves not only training the model
to be robust to adversarial attacks under particular threat
models, but also proving that no possible attacks under a
particular constraint could possibly succeed. Specifically,
in this paper, we used the randomized smoothing technique
first developed by (Cohen et al., 2019; Lecuyer et al., 2019)
for classifiers, and later extended by (Chiang et al., 2020)
to deal with regression models. However, as opposed to
defending against an `2-bounded threat models in the im-
age space, we are now defending against an `2-bounded
adversary in the parameter space. Surprisingly, even though
the certificate holds only when randomized smoothing is
applied, empirically, when our watermark is evaluated in
a black-box setting on the non-smoothed model, it also ex-
hibits stronger persistence compared to previous methods.

Certified watermark The only other work that we have
found that proposes certified watermarks is (Goldberger
et al., 2020). In (Goldberger et al., 2020), they propose a
technique to find the minimal modification required to re-
move watermark in a neural network. Our proposal differs
from theirs in two ways. First, they do not propose methods
to embed a watermark that would be more resilient, rather
they simply find the minimal change required to remove a
watermark. On the other hand, our proposed watermark is
empirically more resistant compared to previous approaches.



Certified Neural Network Watermarks with Randomized Smoothing

Second, their approach is based on solving mixed integer
linear programs and thus does not scale well to larger net-
works. For example, in their experiment, they were only
able apply their technique on a network with 150 hidden
neurons for MNIST (Goldberger et al., 2020). In contrast,
our method can be easily applied to any modern architecture:
we use ResNet-18 for all of our experiments.

3. Methods
Below, we introduce the formal model for neural network
watermarking, and the watermark removal adversaries that
we are concerned with. Then, we describe some background
related to randomized smoothing, and show that by using
randomized smoothing we can create a watermark that prov-
ably cannot be removed by an `2 adversary.

3.1. Watermarking

White box vs black box We first introduce the distinction
between black box and white box settings from the perspec-
tive of the owner of the model. In a white box setting,
parameters are known. In a black box setting, the model
parameters are hidden behind an API. We consider cases
where the owner may have either black box or white box
access to verify their watermarks.

Black-box watermarking In backdoor-based watermark-
ing, the owner employs a “trigger set” of specially chosen
images that has disjoint distribution compared to the origi-
nal dataset. If another model makes correct predictions on
this trigger set, then this is evidence that the model has been
stolen. A backdoor-based watermark can be verified in a
black-box setting.

The trigger set may be chosen in various ways. (Zhang
et al., 2018) considered three different methods of generat-
ing the trigger set: embedded content, pre-specified noise,
and abstract images. Embedded content methods embed
text over existing datasets and assigns all examples with
the text overlay the same fixed label. Pre-specified noise
overlays Gaussian noise on top of existing dataset and again
assigns the examples with the same fixed label. For abstract
images, a set of images from a different domain is addition-
ally used to train the network. For example, MNIST images
could form the trigger set for a CIFAR-10 network, so if an
adversary’s model performs exceedingly well on MNIST
images, then the adversary must have used the stolen model.
Examples of trigger set images are presented can be found
in Appendix - Figure 2.

Our proposed method builds upon such backdoor-based
watermarks, so our marked model can also naturally be
verified in the black-box manner even though our certificate
is only valid in the white-box setting described in the next

section.

White-box watermarking White-box watermarks in gen-
eral embed information directly into the parameters. Our
proposed watermark does not directly embed information
into parameters, but parameter access is required for veri-
fication, so it is still a white-box watermark. The rationale
for using such a white-box watermark is detailed below.

In the black-box setting, to verify model ownership, we
generally check that the trigger set accuracy function from
parameters to accuracy f(θ) is larger than a threshold
(Shafieinejad et al., 2019). The trigger set accuracy function
takes in model parameter as input and outputs the accuracy
on the trigger set. Since directly certifying the function is
hard, we first convert the trigger set accuracy function f(θ)
to its smoothed counterpart h(θ), and then check that h(θ)
is greater than the threshold t for ownership verification.
Practically, one converts the base function to the smoothed
function by injecting random noise into the parameters dur-
ing multiple trigger set evaluations, and then taking the
median trigger set accuracy as ĥ. Note that this verifica-
tion process requires access to parameters, so ownership
verification using ĥ is considered a white-box watermark.

Watermark Removal Threat Model In our experiments,
we consider three different threat models to the watermark
verification: 1) distillation, 2) finetuning, and 3) an `2 ad-
versary.

In the distillation threat model (1), we assume that the ad-
versary initializes their model with our original model, and
then trains their model with distillation using unlabeled data
that comes from the same distribution. In other words, the
adversary uses our original model to label the unlabeled
data for finetuning. (Shafieinejad et al., 2019) propose first
adding some regularization during the initial part of the at-
tack to remove the watermark, and then later turning off
the regularization to fully recover the test accuracy of the
model. We experiment with this distillation attack both with
and without regularization.

In the finetuning threat model (2), the adversary has its own
labeled dataset from the original data-generating distribu-
tion. This adversary is strictly stronger compared to the
distillation threat model. In our experiments, we make the
conservative assumption that the adversary has exactly the
same amount of data as the model owner.

The `2 adversary (3) obtains the original model parameters,
and then is allowed to move the parameters at most a cer-
tain `2 distance to maximally decrease trigger set accuracy.
Even though the `2 adversary is not a completely realistic
threat model, we argue similarly to the adversarial robust-
ness literature (Carlini et al., 2019) that being able to defend
against a small `2 adversary is a requirement for defend-



Certified Neural Network Watermarks with Randomized Smoothing

ing against more sophisticated attacks. In our experiments,
we empirically find that a large shift of parameters in `2
distance is indicative of the strength of the adversary. For
example, training the models for more time, with a larger
learning rate, or using ground truth labels as opposed to
distillation are all stronger attacks, and as expected, they
both remove the watermark faster and move the parameters
by a greater `2 distance (Table 4). Additionally, given a
local Lipschitz constant of L and a learning rate of r, the
number of steps required to move outside of the ε-`2 ball
can be upper bounded by ε/(rL), and we think the number
of steps is a good proxy for the computational budget of the
adversary.

3.2. Watermark Certification

For our certificates, we focus on the `2 adversary described
above: the goal of certification is to bound the worst-case
decrease in trigger set accuracy, given that the model param-
eters do not move too far in `2 distance. Doing this directly
is in general quite difficult (Katz et al., 2019), but using
techniques from (Chiang et al., 2020; Cohen et al., 2019),
we show that by adding random noise to the parameters it
is possible to define a smoothed version of the model and
bound the change in its trigger set accuracy.

Deriving the certificate Before we start describing the
watermark certificate, we will first introduce the percentile
smoothed function from (Chiang et al., 2020).

Definition 3.1. Given f : Rd −→ R and G ∼ N(0, σ2I),
we define the percentile smoothing of f as

hp(x) = sup{y ∈ R | P[f(x+G) ≤ y] ≤ p} (1)

hp(x) = inf{y ∈ R | P[f(x+G) ≤ y] ≥ p} (2)

As mentioned in (Chiang et al., 2020), the two forms hp
and hp are needed to handle edge cases with discrete dis-
tributions. While hp may not admit a closed form, we
can approximate it by Monte Carlo sampling (Cohen et al.,
2019).

There are some differences from existing adversarial robust-
ness work in how we apply these bounds. First, while the
robustness literature applies the smoothing results to bound
outputs of the classifier itself, we apply smoothing over
the trigger set accuracy function to bound changes in trig-
ger set accuracy. Second, we are applying smoothing over
parameters as opposed to input. Our trigger set accuracy
function f(X, θ) in general takes in two arguments: X , a
set of images, and θ, the model parameters. In the case of
adversarial robustness, the model parameters θ are constant
after training while the attacker perturbs the image x. But
in our case, the trigger set X remains constant and the ad-
versary can only change θ. Therefore, to defend against our

specific adversary, we apply smoothing over θ as opposed
to X . Since the trigger set X is constant for our case, we
simply write the trigger set accuracy function as f(θ) for
the remaining part of the paper.

In our proposed watermark, we use the median smoothed
version (h50%) of the trigger set accuracy function for own-
ership verification. Empirically evaluating h50% essentially
involves adding noise to several copies of the model pa-
rameters, calculating trigger set accuracy for all of them,
and taking the median trigger set accuracy. The details of
evaluating smoothed trigger set accuracy are described in
Algorithm 2 in Appendix A.1.

Even though the evaluation process of h50% is more in-
volved compared to the base trigger set accuracy function,
the smoothed version allows us to use Lemma 1 from (Chi-
ang et al., 2020) to bound the worst case change in the
trigger set accuracy given bounded change in parameters, as
shown in Corollary 1. We have delegated the proof of the
corollary to Appendix A.3.

Corollary 3.2. Given a measureable trigger set accuracy
function f(θ), the median smoothed trigger set accuracy
function h50%(θ) can be lower bounded as follows

hΦ(−ε/σ)(θ) ≤ h50%(θ + δ) ∀ ‖δ‖2 < ε, (3)

when the adversary does not modify the model parameters
θ by more than ε in terms of `2 norm. Φ is the standard
Gaussian CDF.

Using the above corollary, we can then bound the worst
case trigger set accuracy given the ε adversary by evaluating
hΦ(−ε/σ)(x). Even though hΦ(−ε/σ)(x) does not have a
closed form, we can calculate an empirical estimator that
would lower bound it with sufficient confidence c. We
detail steps for calculating the estimator in Algorithm 2 in
Appendix 2.

Trigger set accuracy and model ownership In this pa-
per, we assume a sufficiently high trigger set accuracy im-
plies ownership with high probability. However, there are
some scenarios where the assumption does not hold, which
we will clarify below. Whether high trigger set accuracy im-
plies ownership depends heavily on the trigger set selected.
For example, if the trigger set (X, Y) selected has labels
corresponding to what most people would consider to be
correct classes, then a model developed independently by
someone else would likely classify such trigger sets cor-
rectly, leading to incorrect ownership assignment. However,
if the trigger set consists of wrong or meaningless labels
(such as dog images paired withi cat labels), then an in-
dependently developed model is very unlikely to classify
such trigger sets correctly. In our paper, we assume that the
trigger set examples selected have a probability less than
random chance of being classified correctly by a random



Certified Neural Network Watermarks with Randomized Smoothing

model, and that a sufficiently high trigger set accuracy im-
plies ownership. Our certificate is only focused on proving
the preservation of trigger set accuracy when the adversary
is allowed to move parameters within a certain `2 norm ball.

Algorithm 1 Embed Certifiable Watermark
Required: training samples X , trigger set samples
Xtrigger, learning rate τ , maximum noise level ε, replay
count k, noise sample count t
for epoch = 1, ... , N do

for B ⊂ X do
gθ ← E(x,y)∈B [∇θl(x, y, θ)]
θ ← θ − τgθ

for B ⊂ Xtrigger do
gθ = 0
for i = 1 to k do

σ ← i
k ε

for j = 1 to t do
G ∼ N(0, σ2I)
gθ ← gθ + E(x,y)∈B [∇θl(x, y, θ +G)]

gθ ← gθ/(kt)
θ ← θ − τgθ

Embedding the Certifiable Watermark To embed the
watermark during training, we add Gaussian noise and train
on the trigger set images with the desired labels. For a given
trigger set image, we average gradients across several (in
our experiments, 100) draws of noise to better approximate
the gradient of the smoothed classifier. Directly adding a
large amount of noise into all parameters makes training
unstable, so we incrementally increase the levels of noise
within each epoch. In our experiments, we inject Gaussian
noise with a range of standard deviations σ ranging from
0 to 1. Empirically, we notice that the test accuracy drops
when using this technique to embed the watermark, so to
recover some of the lost test accuracy, we warm up the
model with regular training and only begin embedding the
watermark after the fifth epoch. We note that using warm-up
epochs to recover clean accuracy is a common practice in the
robustness literature (Balaji et al., 2019; Gowal et al., 2018).
The detailed training method is described in Algorithm 1.

4. Experiments
In our first set of experiments, we investigate the strength
of our certificate under two datasets and three watermark
schemes. In our second set of experiments, we evaluate the
watermark’s empirical robustness to removal compared to
previous methods that claimed resistance to removal attacks.
The code for all these experiments is publically available 1.

1A PyTorch implementation of Certified Watermarks is
available at https://github.com/arpitbansal297/

4.1. Experimental Settings

To produce the trigger sets themselves, we consider the
three schemes from (Zhang et al., 2018): images with em-
bedded content (superimposed text), images with random
noise, or images from an unrelated dataset (CIFAR-10 for
MNIST and vice versa) (Figure 2). While we generated
certificates for all three schemes, we focus on embedded
content watermark for empirical persistency evaluation.

To train the watermarked model, we used ResNet-18, SGD
with learning rate of .05, momentum of .9, and weight decay
of 1e-4. The model is trained for 100 epochs, and the
learning rate is divided by 10 every 30 epochs. Only 50%
of the data is used for training, since we reserve the other
half for the adversary. For our watermark models, we select
σ of 1, replay count of 20, and noise sample count of 100.
Given these training parameters, embedding the watermark
increase the compute time by two times compared to regular
training. For certification, we use 10000 instances of Monte
Carlo sampling to perform smoothing.

To attack the model, we used Adam with learning rates of
.1, .001 or .0001 for 50 epochs. We test three different types
of attacks: finetuning, hard-label distillation, and soft-label
distillation. Soft-label distillation takes the probability dis-
tribution of the original model as labels, whereas hard-label
distillation takes only the label with maximum probability.
We always give the adversary the same amount of data as
the owner (labeled for finetuning, unlabeled for distillation)
to err on the conservative side for our evaluation.

Figure 1. Graphical illustration of perfect, sufficient, and necessary
threat models.

4.2. Properties of a Good Threat Model

Before we present our experimental results for watermark
certification, we first briefly discuss properties of a good
threat model and what an appropriate radius to certify would
be.

In (Sharif et al., 2018), the author defines a perfect threat
model as being able to capture all items that are similar to
the current example. In the case of adversarial attacks, we
would like to capture all modified images that are similar to
the original image. In the case of watermark removal, we

Certified_Watermarks

https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks
https://github.com/arpitbansal297/Certified_Watermarks


Certified Neural Network Watermarks with Randomized Smoothing

Attack Radius 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Worst Case Accuracy 85.8% 82.5% 80.5% 76.2% 67.1% 56.1% 32.0% 18.4% 8.4%

Table 1. Attack Radius vs Worst Case Accuracy of the Model. It becomes meaningless to defend against a threat model with a radius
larger than 1.8 because these models are indistinguishable from any randomly initialized model.

would like to cover all attacked models that have similar test
accuracy as the original model.

However, specifying a perfect threat model is often impossi-
ble for an obvious reason: we do not have an oracle measure
of human perceptual similarities nor can we easily specify
constraints that capture all models with similar test accuracy.
As a result, researchers often have to trade off between two
different imperfect threat models: a sufficient threat model
and a necessary threat model. The sufficient threat model is
a subset of the perfect threat model whereas the necessary
threat model is a superset of the perfect threat model as
illustrated in the Figure 1.

Most prior works prioritize the sufficiency criteria over the
necessary criteria since being able to defend against a suffi-
cient threat model is a requirement for being able to defend
against the perfect threat model. In the watermark setting,
being able to retain the trigger set accuracy (watermark)
within the `2 norm ball of the parameter space is thus a
prerequisite for defending against the perfect threat model
which would include models outside of the `2 norm ball.

Appropriate Radius to Certify Here, we analyze the ap-
propriate `2 norm constraint based on the sufficiency con-
dition and find that a certified radius between 0 and 1.8 is
appropriate and that our certified radius is indeed at a sim-
ilar magnitude. In Table 1 on the right, we use a standard
PGD attack in the parameter space to gauge how much the
accuracy of the model could decrease within the specified
radius on the CIFAR-10 dataset. We ran 40 steps of PGD
with a learning rate of 0.001, and the parameter gradient is
calculated over 2560 examples. If we consider all models
with higher than 80% test accuracy to be similar, then an `2
radius of 0.6 would satisfy the sufficiency condition. This is
similar in magnitude to our certified radius presented in the
next section, which is between 0.2 to 1.2. The determination
of the appropriate radius is still dependent on some subjec-
tive judgement on what one would consider to be a well
performing test accuracy. However, what we do know is
that the appropriate radius should lie somewhere between 0
and 1.8 – defending against a radius larger than 1.8 is mean-
ingless, as a model with only 8% accuracy on CIFAR-10 is
indistinguishable from any randomly initialized model.

4.3. Watermark Certificate Evaluation

In this section, we investigate the certified trigger set accu-
racy that our watermarking is able to guarantee against `2

adversaries of various strengths. To further contextualize the
meaning of a certified `2 radius, we consider the size of the
empirical changes in parameters observed after performing
various watermark removal attacks. Finally, we also study
how one can increase the certificate by modifying the noise
level.

As shown in Table 2, we are able to certify trigger set ac-
curacy for radii up to 0.4 for all datasets and watermark
schemes considered. This is quite a substantial radius when
considering the sufficiency condition, which suggests a
meaningful certificate does not exceed a radius of 1.8. Our
certificate seems to be similarly effective across all trigger
set types. In the best scenario for CIFAR-10, we can certify
that the trigger set accuracy does not drop below 51% as
long as parameters do not move more than an `2 distance of
1.

To see how long our certificates can persist in the face of
attack, we measure the approximate amount of `2 parameter
change in the first epoch under different attack settings. In
Table 4, with learning rate 0.0001, parameters change by
`2 distance of approximately 2-3. In other words, it would
require approximately 1/3 to 1/2 of an epoch to move outside
of a certified radius of 1. (We focus here on the first epoch
because changes are relatively small in succeeding epochs;
see Appendix.)

Interestingly, attacks considered to be stronger correspond
to changes of a greater distance. This relationship helps
support the use of `2 radius as a proxy for the strength of
the adversary. For example, fine-tuning has been found
to be a stronger attack compared to hard label distillation,
and correspondingly (Shafieinejad et al., 2019), fine-tuning
moves the network by a larger distance in the first epoch
compared to hard label distillation. Similarly, an attack
that is stronger due to a higher learning rate moves the
parameters much faster compared to an attack with a lower
learning rate.

In Table 3, we show that one can obtain larger certificates
by increasing the noise level. However, as one makes the
model more robust against watermark removal, the model’s
test accuracy also decreases. This trade-off is similar to the
trade-off observed in the adversarial robustness literature
(Madry et al., 2017). As the level of noise increases, training
also becomes more unstable. For example, using the same
hyperparameters as our other experiments, we were unable
to train models with σ = 1.5. However, this is not to say



Certified Neural Network Watermarks with Randomized Smoothing

`2 Radius (ε)
Dataset Watermark 0.2 0.4 0.6 0.8 1 1.2

MNIST Embedded content 100% 95% 47% 3% 0% 0%
MNIST Noise 100% 91% 7% 0% 0% 0%
MNIST Unrelated 100% 94% 45% 4% 0% 0%
CIFAR-10 Embedded content 100% 100% 100% 93% 51% 5%
CIFAR-10 Noise 100% 100% 100% 100% 47% 0%
CIFAR-10 Unrelated 100% 100% 100% 97% 35% 0%

Table 2. Certified trigger set accuracy at different radius

Certified Watermark Accuracy
`2 radius (ε)

Noise Level (σ) Test Accuracy 0.2 0.4 0.6 0.8 1 1.2 1.4

1 86.00% 100.00% 100.00% 100.00% 93.00% 51.00% 5.00% 0.00%
1.1 84.56% 100.00% 100.00% 100.00% 97.00% 63.00% 13.00% 0.00%
1.2 84.18% 100.00% 100.00% 100.00% 100.00% 98.00% 74.00% 24.00%

Table 3. Trade-off between certified trigger set accuracy and noise level (σ) for CIFAR-10

that it is impossible to train a model with σ = 1.5. We
did find an alternative setting where σ = 1.5 is trainable
and offers higher robustness compared to σ = 1.0 − 1.2.
However, since the hyperparameters are not the same, we
do not list the results here as we don’t think they are directly
comparable.

Overall, it would take approximately 0.03 to 0.3 epochs for
the attacker to escape the certified radius, depending on the
type of attack, watermark schemes, and dataset. Our certi-
fied bounds are substantial when considering the sufficiency
criteria, but they are still quite small when compared to a
non-`2 bounded attack. In the next section, we show that
even though our certificates are not large when considering
the optimization trajectory, the watermarks are empirically
stronger than the certificate is able to guarantee: in most
cases, our watermarks are more resistant to removal attacks
compared to previous methods in both the white-box and
black-box settings.

4.4. Empirical Watermark Persistence Evaluation

In this section, we evaluate the persistence of our proposed
watermarking methods and the model’s performance on the
original dataset. For all experiments in this section, we
use the embedded content method to produce the trigger
set. We compare our watermark method with the baseline
method from (Zhang et al., 2018), which is the same as
our watermark method but without noise injection during
training. We further conduct additional attack evaluations
in Appendix A.7.

For persistence evaluation, we focus on two main attacks:
the distillation attack and the finetuning attack, as both of

these have been shown to be very effective in (Shafieinejad
et al., 2019; Aiken et al., 2020). In addition, we tested the
effect of different learning rates and label smoothing levels,
which have also been shown to influence the effectiveness
of watermark removal techniques (Shafieinejad et al., 2019).
To make our attacks more similar to (Shafieinejad et al.,
2019), we also experimented with adding parameter regular-
ization during attack.

We first evaluate our proposed watermark against finetuning
attacks. In Table 5, we see that our proposed watermark is
much more robust with respect to finetuning attacks than the
baseline method on CIFAR-10, and is comparably resistant
on MNIST. In the case of CIFAR-10, the baseline water-
mark is completely removed within less than 10 epochs (See
Figure 1 in Appendix), but our white-box watermark is still
visible after finetuning for up to 50 epochs. In the case of
MNIST, both the proposed method and the baseline are quite
resistant. However, our proposed method achieves slightly
higher trigger set accuracy for both white-box watermarks
and black-box watermarks throughout the 50 epochs of the
finetuning attack. In the case of CIFAR-100, neither water-
mark is very resistant to removal. However, our blackbox
watermark slightly outperforms the baseline method.

In the face of the distillation attack, we find our white-box
watermark to be extremely resistant. The trigger set accu-
racy remains 100% even after 50 epochs of attack. However,
our black-box watermark works more effectively on CIFAR-
10 than MNIST. In the case of CIFAR-10, the black-box
watermark remains at 81.25% after 50 epochs of distillation
attack, whereas only 50.00% of trigger set accuracy remains
for MNIST. In the case of CIFAR-100, our proposed water-



Certified Neural Network Watermarks with Randomized Smoothing

Attack Type Finetuning
Distillation
Hard Label

Distillation
Soft Label Finetuning

Distillation
Hard Label

Distillation
Soft Label

Learning Rate 0.0001 0.0001 0.0001 0.001 0.001 0.001

MNIST 2.67 2.39 1.56 19.39 17.58 20.35
CIFAR-10 2.85 2.41 2.06 19.93 19.40 19.29

Table 4. `2 distance change in the first epoch

Dataset Attack lr
Baseline
Watermark

Black-box
Watermark

White-box
Watermark

MNIST Finetuning 0.0001 45.31% 59.38% 100.00%
MNIST Finetuning 0.001 50.00% 54.70% 100.00%
MNIST Hard-Label Distillation 0.001 42.19% 50.00% 100.00%
MNIST Soft-Label Distillation 0.001 96.88% 100.00% 100.00%
CIFAR-10 Finetuning 0.0001 17.20% 9.40% 100.00%
CIFAR-10 Finetuning 0.001 14.06% 10.94% 100.00%
CIFAR-10 Hard-Label Distillation 0.001 29.69% 81.25% 100.00%
CIFAR-10 Soft-Label Distillation 0.001 81.25% 100.00% 100.00%
CIFAR-100 Finetuning 0.0001 18.75% 23.44% 100.00%
CIFAR-100 Finetuning 0.001 0.00% 0.00% 0.00%
CIFAR-100 Hard-Label Distillation 0.001 7.81% 12.5% 5.00%
CIFAR-100 Soft-Label Distillation 0.001 96.88% 96.88% 98.44%

MNIST Hard-Label Distillation + Reg 0.1 40.63% 32.81% 0.00%
CIFAR-10 Hard-Label Distillation + Reg 0.1 8.00% 27.00% 0.00%
CIFAR-100 Hard-Label Distillation + Reg 0.1 0.00% 0.00% 0.00%

Table 5. Trigger set accuracy after 50 epochs of removal attacks. We note that this is only a snapshot of the trigger set accuracy. During
training, trigger set accuracies could sometimes fluctuate significantly (see figures in Appendix). We use watermarks from (Zhang et al.,
2018) as the baseline watermark.

mark slightly outperforms the baseline method. However,
they are both quite susceptible to removal attack.

When regularization is added in addition to distillation, we
find that our white-box watermark is completely removed.
This could be due to regularization moving the parameters
further in terms of `2 norm. However, we note that our
black-box watermark still persists similarly to the baseline.

In some cases, the baseline watermark persists quite strongly.
For example, in the case of soft-label distillation, the base-
line watermark still achieves higher than 75% accuracy
after attack. We tried a variety of settings, but we had dif-
ficulty completely removing the watermark as described
in (Shafieinejad et al., 2019). Differences in performance
could be due to architecture, regularization, or other factors
– experimental code was not released by (Shafieinejad et al.,
2019), so it is hard to know exactly what might be the cause.
However, we note that our main goal is to show that our
proposed watermark is more resistant to removal, and our
trigger set accuracy is consistently higher compared to the
baseline throughout the attack.

Even though our watermark is generally more resistant in

both the white-box and black-box settings, our proposed
method does slightly decrease the accuracy of the model
on the original dataset. Test accuracies are decreased by
0.1% (from 99.5% to 99.4%), 3.3% (from 89.3% to 86.0%),
1.1% (from 68.28% to 67.23%) for MNIST, CIFAR-10, and
CIFAR-100 respectively. The decrease in clean accuracy has
been historically observed for other forms of robust train-
ing (Madry et al., 2017), and recovery of the test accuracy
in robust training is still an active area of research (Balaji
et al., 2019). However, it is worth noting that the decrease
in accuracy does not scale with the difficulty of the dataset.
For example, even though CIFAR-100 is a much more chal-
lenging dataset compared to CIFAR-10, we actually observe
smaller accuracy decrease for CIFAR-100.

5. Conclusion
We present a certifiable neural network watermark – trigger
set accuracy is provably maintained unless the network pa-
rameters are moved by more than a given `2 distance. We
see this as the first step towards guaranteed persistence of
watermarks in the face of adversaries – a valuable property
in real-world applications. We also analyzed the size of our



Certified Neural Network Watermarks with Randomized Smoothing

certificate with respect to the sufficiency criteria, and found
that our certificates are indeed quite meaningful.

At the same time, we find that our certifiable watermarks are
empirically far more resistant to removal than the certified
bounds can guarantee. Indeed in the face of the removal at-
tacks from the literature, our watermarks are more persistent
than previous methods. Our randomized-smoothing-based
training scheme is therefore a watermarking technique of
interest even where a certificate is not needed. We are hope-
ful that our technique represents a contribution to both the
theory and practice of neural network watermarking, and
that this approach can lead to watermarks that are both em-
pirically useful while coming with provable guarantees.

6. Acknowledgements
This work was supported by DARPA GARD, Adobe Re-
search, and the Office of Naval research.

References
Adi, Y., Baum, C., Cisse, M., Pinkas, B., and Keshet, J.

Turning your weakness into a strength: Watermarking
deep neural networks by backdooring. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pp. 1615–
1631, 2018.

Aiken, W., Kim, H., and Woo, S. Neural network laundering:
Removing black-box backdoor watermarks from deep
neural networks. arXiv preprint arXiv:2004.11368, 2020.

Amodei, D. and Hernandez, D. Ai and compute. Herun-
tergeladen von https://blog. openai. com/aiand-compute,
2018.

Balaji, Y., Goldstein, T., and Hoffman, J. Instance adap-
tive adversarial training: Improved accuracy tradeoffs in
neural nets. arXiv preprint arXiv:1910.08051, 2019.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber,
J., Tsipras, D., Goodfellow, I., Madry, A., and Kurakin,
A. On evaluating adversarial robustness, 2019.

Chen, X., Wang, W., Ding, Y., Bender, C., Jia, R., Li, B.,
and Song, D. Leveraging unlabeled data for watermark
removal of deep neural networks. In ICML workshop on
Security and Privacy of Machine Learning, 2019.

Chiang, P.-y., Ni, R., Abdelkader, A., Zhu, C., Studor,
C., and Goldstein, T. Certified defenses for adversar-
ial patches. In International Conference on Learning
Representations, 2019.

Chiang, P.-y., Curry, M. J., Abdelkader, A., Kumar, A.,
Dickerson, J., and Goldstein, T. Detection as regression:
Certified object detection by median smoothing. arXiv
preprint arXiv:2007.03730, 2020.

Cohen, J. M., Rosenfeld, E., and Kolter, J. Z. Certified
adversarial robustness via randomized smoothing. arXiv
preprint arXiv:1902.02918, 2019.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A.,
Xiao, C., Prakash, A., Kohno, T., and Song, D. Robust
physical-world attacks on deep learning models. arXiv
preprint arXiv:1707.08945, 2017.

Goldberger, B., Katz, G., Adi, Y., and Keshet, J. Minimal
modifications of deep neural networks using verification.
In Albert, E. and Kovacs, L. (eds.), LPAR23. LPAR-23:
23rd International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, volume 73 of EPiC
Series in Computing, pp. 260–278. EasyChair, 2020. doi:
10.29007/699q. URL https://easychair.org/
publications/paper/CWhF.

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C.,
Uesato, J., Mann, T., and Kohli, P. On the effectiveness of
interval bound propagation for training verifiably robust
models. arXiv preprint arXiv:1810.12715, 2018.

Hartung, F. and Kutter, M. Multimedia watermarking tech-
niques. Proceedings of the IEEE, 87(7):1079–1107, 1999.

Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C.,
Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljić, A., et al.
The marabou framework for verification and analysis
of deep neural networks. In International Conference
on Computer Aided Verification, pp. 443–452. Springer,
2019.

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and
Jana, S. Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), pp. 656–672. IEEE, 2019.

Levine, A. and Feizi, S. Robustness certificates for sparse ad-
versarial attacks by randomized ablation. arXiv preprint
arXiv:1911.09272, 2019.

Li, C. OpenAI’s GPT-3 Language Model: A Technical
Overview, 2020. URL https://lambdalabs.com/
blog/demystifying-gpt-3/#1.

Li, H., Willson, E., Zheng, H., and Zhao, B. Y. Persistent
and unforgeable watermarks for deep neural networks.
arXiv preprint arXiv:1910.01226, 2019.

Lukas, N., Zhang, Y., and Kerschbaum, F. Deep neural net-
work fingerprinting by conferrable adversarial examples.
arXiv preprint arXiv:1912.00888, 2019.

https://easychair.org/publications/paper/CWhF
https://easychair.org/publications/paper/CWhF
https://lambdalabs.com/blog/demystifying-gpt-3/#1
https://lambdalabs.com/blog/demystifying-gpt-3/#1


Certified Neural Network Watermarks with Randomized Smoothing

Lukas, N., Jiang, E., Li, X., and Kerschbaum, F. Sok:
How robust is image classification deep neural net-
work watermarking?(extended version). arXiv preprint
arXiv:2108.04974, 2021.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Mirman, M., Gehr, T., and Vechev, M. Differentiable ab-
stract interpretation for provably robust neural networks.
In International Conference on Machine Learning, pp.
3575–3583, 2018.

Rouhani, B. D., Chen, H., and Koushanfar, F. Deepsigns:
A generic watermarking framework for ip protection of
deep learning models. arXiv preprint arXiv:1804.00750,
2018.

Shafieinejad, M., Wang, J., Lukas, N., Li, X., and Ker-
schbaum, F. On the robustness of the backdoor-based
watermarking in deep neural networks. arXiv preprint
arXiv:1906.07745, 2019.

Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K. Ad-
versarial generative nets: Neural network attacks on state-
of-the-art face recognition. CoRR, abs/1801.00349, 2018.
URL http://arxiv.org/abs/1801.00349.

Szyller, S., Atli, B. G., Marchal, S., and Asokan, N. Dawn:
Dynamic adversarial watermarking of neural networks.
arXiv preprint arXiv:1906.00830, 2019.

Uchida, Y., Nagai, Y., Sakazawa, S., and Satoh, S. Embed-
ding watermarks into deep neural networks. In Proceed-
ings of the 2017 ACM on International Conference on
Multimedia Retrieval, pp. 269–277, 2017.

Wang, T. and Kerschbaum, F. Robust and undetectable
white-box watermarks for deep neural networks. arXiv
preprint arXiv:1910.14268, 2019.

Wang, T. and Kerschbaum, F. Attacks on digital water-
marks for deep neural networks. In ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 2622–2626, 2019.

Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-
J., Boning, D., Dhillon, I. S., and Daniel, L. Towards
fast computation of certified robustness for relu networks,
2018.

Wong, E. and Kolter, J. Z. Provable defenses against adver-
sarial examples via the convex outer adversarial polytope.
arXiv preprint arXiv:1711.00851, 2017.

Zhang, H., Chen, H., Xiao, C., Li, B., Boning, D., and Hsieh,
C.-J. Towards stable and efficient training of verifiably
robust neural networks, 2019.

Zhang, J., Gu, Z., Jang, J., Wu, H., Stoecklin, M. P., Huang,
H., and Molloy, I. Protecting intellectual property of
deep neural networks with watermarking. In Proceed-
ings of the 2018 on Asia Conference on Computer and
Communications Security, pp. 159–172, 2018.

http://arxiv.org/abs/1801.00349


Certified Neural Network Watermarks with Randomized Smoothing

A. Appendix
A.1. Algorithm for evaluating the smoothed model

Algorithm 2 Evaluate and Certify the Median Smoothed Model
function TRIGGERSETACCURACY(f , θ, σ, n)

ŵ ← AddGaussianNoise(θ, σ, n) . n simulations of noised parameter w
â← f(θ̂) . evaluate trigger accuracy for each simulation of w
â← Sort(â) . Sort simulated accuracies
amedian ← âb0.5nc . Take the median
return amedian

function TRIGGERSETACCURACYLOWERBOUND(f , θ, σ, ε, n, c)
θ̂ ← AddGaussianNoise(θ, σ, n) . n simulations of noised parameter w
â← f(θ̂) . evaluate trigger accuracy for each simulation of θ
â← Sort(â) . Sort simulated accuracies
k ← EmpiricalPercentile(n, c, σ, ε) . Algorithm 1 in Appendix
a← âk . âk Lower bound hΦ(−ε/σ)(θ) with confidence c
return a

A.2. Samples of watermark images

(a) Original (b) Embedded Content (c) Gaussian Noise (d) Unrelated

Figure 2. Samples of the backdoor images used for watermarking.



Certified Neural Network Watermarks with Randomized Smoothing

A.3. Proof of Corollary 1

hp(x) ≤ hp(x+ δ) ≤ hp(x) ∀ ‖δ‖2 < ε Lemma 1 from (Chiang et al., 2020)

=>hp(x) ≤ hp(x+ δ) ∀ ‖δ‖2 < ε

=>hΦ(Φ−1(p)− ε
σ )(x) ≤ hp(x+ δ) ∀ ‖δ‖2 < ε Definition of p

=>hΦ(Φ−1(50%)− ε
σ )(x) ≤ h50%(x+ δ) ∀ ‖δ‖2 < ε Plug in 50% for p

=>hΦ(− ε
σ )(x) ≤ h50%(x+ δ) ∀ ‖δ‖2 < ε

A.4. Trigger set trajectories during attack

Epoch

0.00

25.00

50.00

75.00

100.00

125.00

50 100 150 200

Baseline Our Black Box Watermark Our White Box Watermark

(a) lr=.001

Epoch

0.0

25.0

50.0

75.0

100.0

125.0

10 20 30 40 50

Baseline Our Black Box Watermark Our White Box Watermark

(b) lr=.0001

Figure 3. CIFAR-10 trigger set accuracy when faced with finetuning attacks

Epoch

0.00

25.00

50.00

75.00

100.00

125.00

10 20 30 40 50

Baseline Our Black Box Watermark Our White Box Watermark

(a) finetuning attack with lr=.001

Epoch

0.0

25.0

50.0

75.0

100.0

125.0

10 20 30 40 50

Baseline Our Black Box Watermark Our White Box Watermark

(b) finetuning attack with lr=.0001

Figure 4. MNIST trigger set accuracy when faced with finetuning attacks



Certified Neural Network Watermarks with Randomized Smoothing

Epoch

0

25

50

75

100

125

10 20 30 40 50

Baseline Our Black Box Watermark Our White Box Watermark

(a) hard-label distillation with lr=1e-3

Epoch

0

25

50

75

100

125

10 20 30 40 50

Baseline Our Black Box Watermark Our White Box Watermark

(b) soft-label distillation with lr=1e-3

Figure 5. MNIST trigger set accuracy when faced with distillation attacks

Epoch

0

25

50

75

100

125

10 20 30 40 50

Baseline Our Black Box Watermark Our White Box Watermark

(a) hard-label distillation with lr=1e-3

Epoch

0

25

50

75

100

125

10 20 30 40 50

Baseline Our Black Box Watermark Our White Box Watermark

(b) soft-label distillation with lr=1e-3

Figure 6. CIFAR-10 trigger set accuracy when faced with distillation attacks

Epoch

0

25

50

75

100

125

10 20 30 40 50

Baseline Our Black Box Watermark Our White Box Watermark

(a) CIFAR-10

Epoch

0

25

50

75

100

125

10 20 30 40 50

Baseline Our Black Box Watermark Our White Box Watermark

(b) MNIST

Figure 7. Trigger set accuracy when faced with distillation+regularization attacks



Certified Neural Network Watermarks with Randomized Smoothing

A.5. Algorithm for empirical order statistic

Algorithm 3 Choosing the empirical order statistics that sufficiently lower bound the theoretical percentile
function EMPIRICALPERCENTILE(n, c, σ, ε)

plower ← Φ(− ε
σ ) . calculate theoretical percentile that we should be lower bounding

K̂lower, K̂lower ← 0, bn · plowerc . initialized empirical order statistics for lower bound
while K̂lower − K̂lower > 1 do

K̇lower ← b(K̂lower + K̂lower)/2c
if 1-Binomial(n, K̇lower, plower) > c then

K̂lower ← K̇lower

else
K̂lower ← K̇lower

if K̂lower > 0 then
return K̂lower

else
return null



Certified Neural Network Watermarks with Randomized Smoothing

A.6. `2 norm change during attack

Method 1st 2 3 4 5 6 7 8 9 10

CIFAR

Hard label 10−4 2.41 3.07 3.56 4.00 4.37 4.71 5.00 5.32 5.64 5.88
Hard label 10−3 19.4 21.33 23.45 25.71 27.95 30.02 32.06 34.06 36.12 38.04
Soft label 10−4 2.06 2.47 2.73 2.95 3.2 3.47 3.73 3.97 4.16 4.38
Soft label 10−3 19.29 20.19 21.00 21.9 22.75 23.7 24.64 25.5 26.36 27.34
Finetune 10−4 2.85 3.47 4.18 4.79 5.48 6.13 6.76 7.37 7.92 8.45
Finetune 10−3 19.93 22.57 25.54 28.41 31.34 34.31 37.31 40.18 42.98 45.73

MNIST

Hard label 10−4 2.39 3.14 3.71 4.17 4.66 5.04 5.32 5.63 5.92 6.25
Hard label 10−3 17.58 19.34 21.2 22.87 24.77 26.73 28.77 30.33 32.12 33.83
Soft label 10−4 1.56 2.23 2.86 3.46 3.98 4.45 4.94 5.35 5.76 6.15
Soft label 10−3 20.35 22.51 25.00 28.12 30.29 32.31 34.35 36.58 38.84 41.1
Finetune 10−4 2.67 3.44 4.08 4.61 5.12 5.67 6.03 6.45 6.87 7.22
Finetune 10−3 19.4 21.33 23.43 25.53 27.59 29.78 31.96 34.15 36.33 38.1

Table 6. Difference in `2 norm from previous parameters after each epoch of attack. After the first epoch, the increase is general small on
each successive epoch.

A.7. Additional Persistence Evaluation

In this section, we evaluated our watermark scheme with respect to 11 more attacks from (Lukas et al., 2021). We allow the
adversary to have a time budget of 1 hour to remove the watermark as this is approximately the amount of time needed to
train the model from scratch. With a budget any larger than 1 hour, the adversary will be better off training his/her own
model.

We consider a watermark removed if the adversary obtains a model with higher than 82% test accuracy with less than 30%
of watermark accuracy. We follow conventions from (Lukas et al., 2021) where they consider an attack successful only
if the accuracy of the model does not degrade by more than a certain amount and than the watermark accuracy remains
above a decision threshold. We selected 82% following the convention in (Lukas et al., 2021) where they consider an attack
unsuccessful if the model’s accuracy has been degraded by more than 5%. On the other hand, we chose 30% as a decision
threshold as specified by (Lukas et al., 2021) to err on the conservative side.

We used the Watermark-Robustness-Toolbox to conduct the additional persistence evaluation. For each of the attack, as
discussed in the paper the defender has half of the original training dataset while the attacker has the other half. For different
attacks discussed in 7, we used the default hyper-parameters present in /configs/cifar10/attack configs/ in which we simply
changed the number of epochs to 100 in order to restrict the adversary within the time budget of approximately 1 hour.

Within the time constraint, all the methods tested fail to remove both the black-box watermark and white-box watermark
simultaneously. Even though neural cleanse and neural laundering are showing some effects at removing the watermark,
these two methods did not successfully remove the watermark within the time limit. The two approaches also result in
greater loss of test accuracy. The fine-tuning based approach (FTAL FTLL, RTAL, and RTLL) surprisingly increases the test
accuracy. This is consistent with the results in (Lukas et al., 2021) where the finetuning based approaches increase the test
accuracy due to the use of additional training data.

https://github.com/dnn-security/Watermark-Robustness-Toolbox
https://github.com/dnn-security/Watermark-Robustness-Toolbox/tree/master/configs/cifar10/attack_configs


Certified Neural Network Watermarks with Randomized Smoothing

BB WM
removal time BB Acc

WB WM
removal time WB Acc

Accuracy
Loss

FTAL 99 15 3600+ 96 -4.01
FTLL 3600+ 62 813 0 -2.24
RTAL 3600+ 56 34 0 -1.22
RTLL 3600+ 100 32 0 -0.33
Adversarial Training 530 28 3600+ 100 3.72
Neural Cleanse 3600+ 47 3600+ 100 0.88
Neural Laundering 3600+ 55 3600+ 82 2.53
Weight Quantization 3600+ 46 3600+ 100 1.83
Feature Shuffling 0.97 100 - 100 0.05
Weight Pruning 3.27 100 - 100 0.05
Weight Shifting 3600+ 52 3600+ 100 2.49

Table 7. Evaluation against most attacks with new metrics


