
Balancing Relevance and Diversity in Online Bipartite Matching via

Submodularity

John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, Pan Xu

{john, kabinav, srin, panxu}@cs.umd.edu
University of Maryland, College Park, MD, USA

“Different roads sometimes lead to the same castle.” – George R.R. Martin

Abstract

In bipartite matching problems, vertices on one side of a bi-
partite graph are paired with those on the other. In its online
variant, one side of the graph is available offline, while the
vertices on the other side arrive online. When a vertex ar-
rives, an irrevocable and immediate decision should be made
by the algorithm; either match it to an available vertex or
drop it. Examples of such problems include matching work-
ers to firms, advertisers to keywords, organs to patients, and
so on. Much of the literature focuses on maximizing the to-
tal relevance—modeled via total weight—of the matching.
However, in many real-world problems, it is also important
to consider contributions of diversity: hiring a diverse pool of
candidates, displaying a relevant but diverse set of ads, and so
on. In this paper, we propose the Online Submodular Bipar-
tite Matching (OSBM) problem, where the goal is to maxi-
mize a submodular function f over the set of matched edges.
This objective is general enough to capture the notion of both
diversity (e.g., a weighted coverage function) and relevance
(e.g., the traditional linear function)—as well as many other
natural objective functions occurring in practice (e.g., limited
total budget in advertising settings). We propose novel algo-
rithms that have provable guarantees and are essentially op-
timal when restricted to various special cases. We also run
experiments on real-world and synthetic datasets to validate
our algorithms.

Introduction

Online Bipartite Matching (OBM) problems are primarily
motivated by Internet advertising. In the basic version of
this problem, we are given a bipartite graph G = (U, V,E),
where U and V represent the offline vertices (advertisers)
and online vertices (keywords or impressions) respectively.
An edge e = (u, v) represents a bid by advertiser u for
a keyword v. When a keyword v arrives, a central agency
must make an instant and irrevocable decision to either re-
ject v or assign v to one of its “neighbors” (i.e., a vertex
that is connected to v by an edge in G) u and obtain a profit
we for the match e = (u, v). A matched advertiser u is no
longer available for future matches. The goal is to design an
efficient online algorithm that maximizes the expected total
weight (profit) of the matching. Following the seminal work
of Karp, Vazirani, and Vazirani (1990), there has been a large

Copyright c� 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

body of research on related variants (Mehta 2012). During
the last decade, OBM and its variants have seen wider ap-
plications in various matching markets: crowdsourcing In-
ternet marketplaces (e.g., (Assadi, Hsu, and Jabbari 2015;
Ho and Vaughan 2012)), online spatial crowdsourcing plat-
forms (e.g., (Tong et al. 2017; Tong et al. 2016b; Tong et
al. 2016a)), ride-sharing platforms (e.g., (Dickerson et al.
2018)). In each of these applications we have the follow-
ing features (1) agents from at least one side appear online
(i.e., one-by-one) (2) an online agent on arrival has to either
be matched immediately to an offline agent—or be rejected.

Most prior research on online matching focuses on maxi-
mizing the total weight of the final matching (Mehta 2012),
which captures the quality/relevance of all the matches. In
many matching markets, we also care about the diversity of
the final matching along with relevance. Ahmed, Dickerson,
and Fuge (2017) considered a motivating example of match-
ing academic papers to potential reviewers: just maximiz-
ing the relevance (the quality of each match) could poten-
tially assign a paper to multiple scholars in a single lab due
to shared expertise, which is undesirable. Instead, we want
to assign each paper to relevant experts with diverse back-
grounds to obtain comprehensive feedback. Maximizing di-
versity1 is of particular importance in various recommenda-
tion systems, ranging from recommendations of new books
and movies on eBay (Chen et al. 2016) to returning search-
engine queries (Agrawal et al. 2009). A common strategy
to address diversity is to first formulate a specific objective
(typically maximization over a submodular function2) cap-
turing the balance of diversity and relevance and then design
an efficient algorithm—typically a greedy one—to solve it
(e.g., (Ahmed, Dickerson, and Fuge 2017) and references
within).

Inspired by the broad applications of OBM and sub-
modular maximization, we propose a variant of the online
matching model which we call Online Submodular Bipar-
tite Matching (OSBM). In particular, we answer the main
Question 1, defined formally below.

Main model. Suppose we have a bipartite graph G =

(U, V,E) where U and V represent the offline and on-

1Both individual and aggregate diversity (Adomavicius and
Kwon 2012).

2See Section for a formal definition and canonical examples.

line agents respectively. We have a finite time horizon T

(known beforehand) and for each time (or round) t 2 [T]
.
=

{1, 2, . . . , T}, at most one vertex v is sampled—in which
case we say v arrives—from a given known probability dis-
tribution {pv}. That is,

P
v2V pv 1; thus, with probability

1 �
P

v2V pv , none of the vertices from V will arrive at t.
The sampling process is independent across different times.
Let rv

.
= T · pv denote the expected number of arrivals of

v in the T online rounds (we interchangeably refer to this
as the arrival rate of v). We assume that the value rv lies in
[0, 1]. Once a vertex v arrives, we need to make an imme-
diate and irrevocable decision: either to reject v or assign v

to one of its neighbors in U . Each u has a unit capacity: it
will be unavailable in the future upon being matched.3 We
are given a non-negative monotone submodular function f

over E as an input. Our goal is to design an online matching
algorithm such that E[f(M)] is maximized, where M is the
final (random) matching obtained.

There are two sources contributing to the randomness of
M: the stochasticity from the online arrivals of V and the in-
ternal randomness used by the algorithm. Note that M can
be a semi-matching, where each u has degree at most 1 while
some v may have degree more than 1 (due to multiple online
arrivals of v). Following prior work (Mehta 2012), we as-
sume |V | � |U | and T � 1. Throughout this paper, we use
edge e = (u, v) and assignment of v to u interchangeably.

Question 1. Is there a constant-factor competitive ratio4

for online algorithm for the Online Submodular Bipartite
Matching problem?

Related model. One important direction in addressing di-
versity in online algorithms has been via online convex pro-
gramming. In particular, Agrawal and Devanur (2014) con-
sidered the model of maximizing a concave function un-
der convex constraints. At each time-step a random vector
is drawn from an unknown distribution and the goal is to
satisfy a convex constraint in expectation. Our work dif-
fers from theirs in multiple aspects. First, the offline prob-
lem of Agrawal and Devanur (2014) is poly-time solvable,
while our problem even in the offline version has unknown
hardness (status unknown for both NP- and APX-hardness).
Equivalence between discrete and continuous functions ex-
ists for submodular minimization via the Lovász extension.
However, a similar continuous relaxation for submodular
maximization is NP-hard to evaluate.5 Hence it is unclear
how one would use their model to address our problem.
Secondly, they consider the large budget regime while all
matching type problems differ from allocation problems in
that this assumption is not true (in fact, the main challenge
is small budgets). The other difference is that our “known
i.i.d.” gives algorithm design more power as compared to
unknown distributions and therefore helps obtain improved
ratios rigorously. For example, the online matching problem

3The general case where each u has a given capacity Cu can be
reduced to this by creating Cu copies of u.

4See Definition 3. Constant refers to value being reasonably
bounded away from zero even for large graphs.

5e.g., Slide 26 in https://goo.gl/HAhqaZ

with linear objectives has been studied both in unknown dis-
tribution and known i.i.d. models separately since it presents
a natural trade-off—knowing more information about the
distribution and the competitive ratio. Based on applications,
one would make assumption one-way or the other.

Special cases. Our model generalizes some well-known
problems in this literature. Note that if the submodular
function is just a linear function of the weights this re-
duces to online weighted matching. Our model can also cap-
ture the Submodular Welfare Maximization (SWM) prob-
lem (Kapralov, Post, and Vondrák 2013); this problem and
its variants have been widely studied in machine learning
and economics (e.g., see (Esfandiari, Korula, and Mirrokni
2016) and references within). Given an instance of SWM we
can add polynomially many extra vertices and reduce it to an
instance of our problem. Due to space constraints we defer
the proof of this reduction and all other theorems/lemmas in
this paper to the supplementary materials.

Applications. We briefly describe some motivating exam-
ples for our problem. The first important application is in
recommender systems. Consider the problem of recommen-
dation in platforms like Netflix, Amazon, etc. We have a set
of users who come online and the system needs to choose a
subset of movies, items to recommend to the user which has
the most relevance. At the same time, the recommendations
to any user needs to be diverse both from an engagement per-
spective (e.g.,, a user doesn’t want to see only action movies
recommended or just a single brand of items while shop-
ping) and from a fairness perspective (e.g., not showing only
stereotypical recommendations based on race, gender, etc.).
See Fig. 1 for an example on the MovieLens dataset. This
naturally fits our model, where we can capture this trade-
off between relevance and diversity via a weighted coverage
function (which is monotone and submodular). Another ap-
plication is in online advertising and auction design. Retar-
geting in personalized advertisements is a major innovation
in the past decade where potential advertisers collect back-
ground information to provide a better ad experience to their
users. One of the major optimization problems for the adver-
tiser is to create various ads to be shown based on the user
profile without knowing a-priori the demand for various ver-
sions. Hence the advertiser instead specifies a single budget
B for a bundle of ads. The goal of the ad-matching agency
is to run a matching algorithm with the objective that the
revenue they will get for this bundle is min{B,

P
e2M we},

which is a submodular function. Another application is in
matching candidates to jobs in a dynamic job market. A
hiring agency announces openings for various positions and
hires the best candidates as and when they come. The most
basic version of this problem is called the secretary prob-
lem (Vanderbei 1980). The goal is usually to hire the best
candidates for the open positions. Recently, with increasing
awareness of various systemic biases, companies also look
to hire diverse candidates (based on various metrics of diver-
sity such as gender, race, and political leanings), which the
classical secretary problem and its variants do not consider.6

6These have been explored practically in some recruiting sys-
tems (Hong et al. 2013).

Figure 1: Recommended Movies for User 574. Left - weighted matching (top 3 highest predictions). Right - submodular
matching with coverage function (balancing diversity of genres).

However, using our model with a submodular function such
as a weighted coverage function over the various metrics as
an objective, we can essentially capture hiring the best can-
didates while maximizing diversity.

Arrival assumption. The literature on Online Matching
considers three broad classes of arrival assumptions: Adver-
sarial Order (AO) (e.g., (Assadi, Hsu, and Jabbari 2015)),
Random Arrival Order (RAO) (e.g., (Zhao, Li, and Ma 2014;
Subramanian et al. 2015)), and Known Independent and
Identical Distribution (KIID). In KIID, an online agent’s ar-
rival is modeled as a sample (identically with replacement)
from a known distribution (e.g., (Singer and Mittal 2013;
Singla and Krause 2013)). In this paper, we consider the
KIID assumption which captures the fact that the distribu-
tion over types can be learnt from historical data; thus can
get improved ratios over other models (see (Dickerson et al.
2018) for a discussion).

Our contributions. Our contributions can be summarized
as follows. First, we propose the Online Submodular Bipar-
tite Matching (OSBM) model, which abstractly captures the
balance between relevance and diversity in the context of
matching markets. Next, we provide two provably good al-
gorithms for this model 7. The first algorithm is based on
Contention Resolution schemes used in the offline submod-
ular maximization literature. This algorithm works for the
case when the arrival rates are integral. Our second algo-
rithm is based on using a feasible solution to an appropriate
mathematical program, where this feasible solution approx-
imates the offline optimal by a factor 1 � 1/e, to guide the
online actions. This algorithm works for the general case of
arbitrary arrival rates. The ratio achieved by this algorithm
is tight even when restricted to the special case of linear ob-
jectives, however the proof only works when the number of
rounds T ! 1. Nonetheless it can be seen as a natural
generalization to submodular functions of the LP-based al-
gorithm proposed by Haeupler, Mirrokni, and Zadimoghad-
dam (2011). Finally, we run experiments on both real-world
as well as synthetic datasets on some common submodular
functions to validate our algorithms and compare them to
natural heuristics.

7One of them works under a mild assumption of |U | = o(
p
T)

Related work. The offline version of our problem is the
well-studied “maximizing a monotone submodular func-
tion subject to a bipartite matching polytope constraint”
problem. More generally, the constraint set can be viewed
as an intersection of two partition matroids. The general
area of submodular maximization is well studied; here,
we only survey algorithmic advances related to maximiza-
tion of a monotone submodular function subject to vari-
ous constraints. The classical work of Nemhauser, Wolsey,
and Fisher (1978) showed that the natural greedy algorithm
achieves an (1 � 1/e)-approximation under a cardinality
constraint, which is optimal in the value oracle model as-
suming P 6= NP (Nemhauser and Wolsey 1978). Under
a general matroid constraint, Calinescu et al. (2011) gave
an algorithm achieving the optimal ratio of 1 � 1/e (in the
value oracle model defined in Section) using the pipage
rounding technique. Lee, Sviridenko, and Vondrák (2010)
considered the constraint case of k matroids with k � 2

and presented a local-search based algorithm. Sarpatwar,
Schieber, and Shachnai (2017) studied the case of intersec-
tion of k matroids and a single knapsack constraint. Re-
cently a series of works has considered submodular max-
imization in the online setting. In particular, Buchbinder,
Feldman, and Schwartz (2015) and Chan et al. (2017) stud-
ied online submodular maximization in the adversarial ar-
rival order with preemption: on arrival of an item, we should
decide whether to accept it or not and possibly rejecting
a previously accepted item. In this paper, we do not al-
low preemption but consider a more flexible arrival assump-
tion (i.e., KIID). This makes the problem tractable and ad-
mits algorithms with non-trivial competitive ratios. Apart
from the offline and online models, submodular maximiza-
tion has received much attention in other models due to its
applications in summarization (Tschiatschek et al. 2014),
data subset selection and active learning (Wei, Iyer, and
Bilmes 2015), and diverse summarization (Mirzasoleiman,
Badanidiyuru, and Karbasi 2016), to name a few. It has been
studied in the streaming (Badanidiyuru et al. 2014; Mirza-
soleiman, Jegelka, and Krause 2018), distributed (Mirza-
soleiman, Badanidiyuru, and Karbasi 2016; Mirzasoleiman
et al. 2016) and stochastic (Karimi et al. 2017; Stan et al.
2017) settings. Online Bipartite matching has been stud-

ied with a long line of work, overviewed comprehensively
by Mehta (2012). In the KIID arrival model, Feldman et
al. (2009) introduced the idea of two suggested matchings
and used that to guide the online phase, which was the first
to beat 1�1/e for the unweighted online bipartite matching.
A similar idea was used by Haeupler, Mirrokni, and Zadi-
moghaddam (2011) for edge-weighted case. Manshadi, Gha-
ran, and Saberi (2012), Jaillet and Lu (2013), and Brubach
et al. (2016) designed LP-based online algorithms for the
unweighted, vertex-weighted and edge-weighted versions of
online matching problems to achieve the best known ratios.

Preliminaries

We first describe the notation used throughout this paper.
For two vectors a and b, a b denotes the coordinate-wise
“” operation. For a binary vector a = (ae) 2 {0, 1}m, let
Supp(a) = {e : ae = 1} be the support of a; we write
f(a) as a short-hand for f(Supp(a)) for any set function
over E. In this paper, we use vectors to denote sets (i.e., us-
ing the indicator binary vector for a set). e is used both as an
edge index as well as Euler’s constant; usage will be appar-
ent from the context. We now give a formal definition of the
submodular function and describe some canonical examples.
Definition 1 (Submodular function). A function f :

2
[n] ! R+ on a ground-set of elements [n] := {1, 2, . . . , n}

is called submodular if for every A,B ✓ [n], we have that
f(A[B)+f(A\B) f(A)+f(B) and f(�) = 0. Addi-
tionally, f is said to be monotone if for every A ✓ B ✓ [n],
we have that f(A) f(B).

For our algorithms, we assume a value-oracle access to
a submodular function. This means that, there is an oracle
which on querying a subset T ✓ [n], returns the value f(T).
The algorithm does not have access to f explicitly.

Examples. Some common examples of submodular func-
tions include the coverage function, piece-wise linear func-
tions, budget-additive functions among others. In our exper-
iments section, we use the following two examples.

1. Coverage function. Given a universe U and g subsets
A1, A2, . . . , Ag ✓ U , the function f(S) = | [i2S Ai|
is called the coverage function for any S ✓ [g]. This can
naturally be extended to the weighted case. Given a non-
negative weight function w : U ! R+, then the weighted
coverage function is defined as f(S) = w([i2SAi).

2. Budget-additive function. For a given total budget B and
a set of weights wi � 0 on the elements [g] of universe
U , for any subset S ✓ U the budget-additive function is
defined as f(S) = min{

P
i2S wi, B}.

Definition 2 (Multilinear extension). The multilinear ex-
tension of a submodular function f is the continuous
function F : [0, 1]

n ! R+ defined as F (x) :=P
T✓[n](

Q
k2T xk

Q
k 62T (1� xk))f(T).

Note that F (x) = f(x) for every x 2 {0, 1}n. The mul-
tilinear extension is a useful tool in maximization of sub-
modular objectives. In particular, the above has the follow-
ing probabilistic interpretation. Let Rx ✓ [n] be a ran-
dom subset of items where each item i 2 [n] is added

into Rx independently with probability xi. We then have
F (x) = E[f(Rx)].

Offline optimal. Throughout this paper we use the terms
offline optimal (or interchangeably offline optimal value)
which refers to the following. Given a specific sequence S

of (random) arrivals, the “offline problem” is to find the best
hindsight matching that maximizes the objective on this se-
quence, denoted by OPT(S). Note that OPT(S) is a ran-
dom variable since S is random. The offline optimal value,
denoted by E[OPT], is the expectation of OPT(S), where
the expectation is taken over all possible random sequences
S.
Definition 3 (Competitive ratio). Let E[ALG(I,D)] de-
note the expected value obtained by an algorithm ALG on
an instance I and arrival distribution D. Let E[OPT(I)]
denote the expected offline optimal. Then the competitive ra-
tio is defined as minI,D E[ALG(I,D)]/E[OPT(I)].

Challenges and Main Techniques

Our algorithm, like prior work on Online Matching, follows
a two-phase approach divided into an Offline phase and an
Online phase.

Offline phase. The first key challenge is to obtain a
good handle on the optimal offline solution. For the edge-
weighted OBM, the offline version reduces to a maximum
weighted matching problem on a bipartite graph, which can
be solved efficiently. For OSBM, the offline version which is
to maximize a general non-negative monotone submodular
function within a bipartite polytope, is non-trivial. Neither
polynomial time- nor APX-hardness of this problem is well-
understood. We tackle this challenge by first proposing a
(offline) Multilinear Maximization Program (MMP) where
we maximize the multilinear extension F of the given sub-
modular function f subject to bipartite matching constraints,
and then use the continuous greedy algorithm (Calinescu et
al. 2011) to solve it. This gives us a marginal distribution
x⇤

= {x⇤
e} for each edge being added in the offline optimal

satisfying F (x⇤
) � (1� 1/e)E[OPT].

Online phase. The next challenge is to use the approximate
offline marginal distribution x⇤ to guide the online phase.
We propose two online algorithms which take x⇤ as input
and make the online decisions by using a modified version
of this. The first is inspired by Theorem 4.3 due to Bansal
et al. (2012) and its extension. We call this the CR-based al-
gorithm which works for the special case of integral arrival
rates. If f is a linear function, then showing each edge e is
added by an online algorithm ALG with probability at least
↵x

⇤
e implies that ALG achieves a final ratio of ↵(1 � 1/e)

(the second factor 1 � 1/e accounts for the loss in the of-
fline phase). This is because E[ALG] � ↵F (x⇤

) by linear-
ity of expectation. However, this approach fails when F is
a multilinear extension of the submodular function f . We
overcome this by using Theorem 4.3 of Bansal et al. (2012)
(see supplementary materials for the theorem statement),
which gives a sufficient condition to ensure that E[ALG] �
↵F (x⇤

) for any multilinear extension F , provided that each
edge e is added in ALG with a marginal distribution at least

↵x
⇤
e . This framework is generalized to Contention Resolu-

tion (CR) schemes (Vondrák, Chekuri, and Zenklusen 2011),
which is used as a tool for the following general problem.
Consider a fractional x 2 PI where PI is a convex relax-
ation of an integral polytope I and let X = (Xe) (not nec-
essarily within I) be a random indicator vector where every
Xe is a Bernoulli random variable with mean xe. Our goal is
to round X to another integral vector Y such that (1) Y 2 I
and (2) E[f(Y)] � ↵E[f(X)] = ↵F (x) with as large ↵ as
possible.

Our second proposed algorithm, which works for
arbitrary arrival rates, is an MMP-based algorithm
(MMP-ALG) described as follows. When a vertex v arrives,
sample a neighboring edge e = (u, v) with probability x

⇤
e

and include it iff u is still available. When f is linear, Hae-
upler, Mirrokni, and Zadimoghaddam (2011) gave a simple
and tight analysis8 showing that MMP-ALG loses a factor
of 1 � 1/e in the online phase. The tight example is as fol-
lows.
Example 1. Consider an unweighted bipartite graph G =

(U, V,E) consisting of a perfect matching with |U | = |V | =
T with x

⇤
e = 1 for each e and f(x⇤

) =
P

e x
⇤
e . Notice

that each e = (u, v) is added by MMP-ALG iff v comes
at least once during the T rounds, which occurs with prob-
ability equal to 1 � 1/e. Thus in this example, we have that
E[MMP-ALG] = (1� 1/e)f(x⇤

).

In this paper, we give a tight analysis showing that
MMP-ALG losses a factor at most 1 � 1/e in the online
phase even for an arbitrary non-negative monotone submod-
ular function f . The downside is that the bounds hold only
in the limit when T ! 1. We believe a careful modifi-
cation of our proof will lead to a finite time analysis, but
do not do so in this paper. In particular when T ! 1,
we prove that E[MMP-ALG] � (1 � 1/e)F (x⇤

) and thus
this yields a final ratio of (1 � 1/e)

2 (after incorporating
another factor of 1 � 1/e in the offline phase). The main
proof idea is through a virtual algorithm ALG which has the
same performance as MMP-ALG and by applying pipage
rounding (Ageev and Sviridenko 2004) to ALG we show
that E[ALG] � F ((1� 1/e)x⇤

) � (1� 1/e)F (x⇤
).

Offline Phase

For an edge e, let xe be the probability that e is chosen in any
fixed offline optimal algorithm. For each u (likewise for v),
let E(u) (E(v)) be the set of neighboring edges incident to u

(v) in G. Let F : [0, 1]
m ! R+ be the multilinear extension

of f . Consider the following mathematical program.
maximize F (x) (1)
subject to

P
e2E(v) xe rv 8v 2 V (2)

P
e2E(u) xe 1 8u 2 U (3)

0 xe 1 8e 2 E (4)

The constraints can be interpreted informally as follows.
Constraint (2) states that the expected number of matches

8Here, “tight” refers to the analysis and not the problem formu-
lation itself.

for any v is no more than the expected number of arrivals of
v (i.e., rv). Constraint (3) states that the expected number of
matches for every u is no more than 1, since u has an unit ca-
pacity. Constraint (4) is valid since every xe is a probability
value.

Lemma 1. There is an efficient algorithm (running in poly-
nomial time) which returns a feasible solution x⇤ to the
program (1) such that F (x⇤

) � (1 � 1/e)E[OPT], where
E[OPT] is the offline optimal value.

Online Algorithms

In this section, we present several online algorithms that take
x⇤ as an input, which is a feasible solution to the program
(1) with F (x⇤

) � (1� 1/e)E[OPT], where E[OPT] refers
to the offline optimal.

A CR-based online algorithm. In this section, we present
a CR-based online algorithm (CR-ALG) for OSBM with
integral arrival rates. In this case, we assume that pv = 1/T

and rv = 1 for all v.
The main idea is as follows. We start with Rx⇤ , which is

obtained by independently sampling each edge e with prob-
ability x

⇤
e . Let X 2 {0, 1}m be the integral vector cor-

responding to Rx⇤ such that Xe = 1 iff e 2 Rx⇤ . Let
EX(v) = {e : e 2 E(v), Xe = 1} and EX(u) = {e :

e 2 E(u), Xe = 1} be the set of sampled edges incident to
u and v respectively. Now we obtain another random vec-
tor Y 2 {0, 1}m from X by uniformly sampling an edge
from EX(u) for each u (the sampling process is indepen-
dent across different u). We then use both X and Y to guide
the online phase. Algorithm 2 describes this algorithm for-
mally.

Algorithm 1 A CR-based algorithm (CR-ALG)
Offline Phase:

Solve Program (1) using continuous greedy and let x⇤
=

(x
⇤
e) be an approximate solution with F (x⇤

) � (1 �
1/e)E[OPT].
Independently sample each edge with probability x

⇤
e . Let

X = (Xe) 2 {0, 1}m be the resultant indicator vector
such that Xe = 1 iff e is sampled.
For each w 2 U [V , let EX(w) = {e : e 2 E(w), Xe =

1} be the set of sampled edges incident to w. Sample
one edge uniformly at random from EX(u) for each u

if EX(u) 6= ;. Let Y X be the indicator vector of the
final edges sampled.
Online Phase:

When v arrives at time t, sample an edge e uniformly from
EX(v). Match it if Ye = 1 and e = (u, v) is safe at t (i.e.,
u is available); skip it otherwise.

Theorem 1. There exists an online algorithm CR-ALG,
which achieves an online competitive ratio of at least 1

2 (1�
e
�1/2

)(1� 1/e) for OSBM with integral arrival rates.

An MMP-based online algorithm. In this section, we
present a MMP-based online algorithm (MMP-ALG) for

OSBM. Compared to CR-ALG, it also extends to the
regime of arbitrary arrival rates rv 2 [0, 1] for each v 2 V .
Algorithm 2 describes it formally.

Algorithm 2 An MMP-based online algorithm
(MMP-ALG)

Offline Phase:

Solve Program (1) using continuous greedy and let x⇤
=

(x
⇤
e) be an approximate solution with F (x⇤

) � (1 �
1/e)E[OPT].
Online Phase:

When v arrives at time t, sample an edge e from E(v)

with probability x⇤
e

rv
(at most one such edge gets sampled).

Match it if e = (u, v) is safe at t (i.e., u is available) and
skip it otherwise.

Theorem 2. There exists a MMP-based online algorithm
MMP-ALG which achieves a competitive ratio of at least
(1� 1/e)

2 for OSBM when |U | = o(
p
T) and T ! 1.

Experiments

In this section, we describe the experimental results for the
movie recommendation application. Additional experiments
using synthetic data on other submodular functions are rel-
egated to the supplemental material. We use the MovieLens
dataset (Harper and Konstan 2016) for our purposes9.

Application. We have a list of movies each associated with
some genres and we have a set of users who come into the
system at various times (e.g., a user logging into the web-
site for a session). We have information about the ratings of
every user for some (different) movies. Our goal is to rec-
ommend a small set of movies which the user hasn’t rated
thus far such that the list is relevant as well as diverse. We
quantify the diversity by using a weighted coverage func-
tion over the set of genres for each user. Hence the goal is
to maximize the sum of these weighted coverage functions
for all users.10 This naturally fits within the framework pro-
posed in this paper, where the set of movies form the side U
and the set of users form the side V .11

Dataset and pre-processing. In this dataset, we have 3952
movies, 6040 users and a total of 100209 ratings of the
movies by the users. We choose 200 users who have given
the most ratings and sub-sample 100 movies at random; this
reduced dataset is used for experiments. Similar to Ahmed,
Dickerson, and Fuge (2017), we use a standard collaborative
filtering approach (Bradley 2016) to complete the matrix of
ratings. To create the graph we do the following. For a given
pair of user u and movie m, if u hasn’t rated m we add an
edge between u and m. For a given user u, we compute the

9Full code can be found at https://bitbucket.org/
karthikabinav/submodularmatching/src/master/

10The sum of submodular functions is also submodular.
11See supplementary materials for details on a Linear Program-

ming formulation of the offline problem.

average predicted rating for every genre and use this aver-
age as the “weight” in the weighted coverage function. This
gives a bias towards genres which the user has highly rated
over ones they haven’t. For every user we choose a random
arrival probability (ensuring that the sum of arrival probabil-
ities equals 1).

Algorithms. We test both our CR-based (Algorithm 1) and
the MMP-based (Algorithm 2) experimentally. Additionally
we consider the following two heuristics for our study. (1)
Greedy: At time step t, let St be the set of edges chosen so
far. When a vertex v arrives, choose an available neighbor
u that maximizes f(St [{(u, v)}) � f(St). If no neighbor
is available, we drop v. (2) Negative CR-based algorithm
(NEG-CR): We tweak CR-ALG by replacing the initial in-
dependent sampling with the following procedure. At every
u, we use the dependent rounding routine due to Gandhi et
al. (2006) to obtain a semi-matching M1. In the online phase
when a v arrives, we sample one of its available neighbors
in M1 uniformly and match it. If not, we drop v.

Results and discussion. We run two kinds of experiments
for our purposes. First, we compare our algorithms against
the baselines by varying two parameters B and ⌘. B repre-
sents the number of times we can match a movie to an user
and ⌘ represents the number of movies matched to any user
on arrival (in the theory B = 1, ⌘ = 1, but we experiment
with different values). Second, we want to measure diver-
sity of recommendations of the various algorithms. To this
end, we compare the various algorithms on the number of
users who have various levels of coverage (i.e., how many
users are shown recommendations greater than x % of the
total weight). The plots in Figure 2 and the leftmost plot of
Figure 3 show the results for the first kind of experiments,
while the right two plots in Figure 3 show the results for the
second kind.

In almost all cases, these plots show that MMP-ALG is
the clear winner and has the best performance. At times
the Greedy algorithm does well, but as B increases the per-
formance drops quickly. Additionally, Greedy makes many
calls to the submodular oracle at each online step, as com-
pared to the other algorithms, which can be limiting in if the
oracle evaluation is time-consuming. The surprising aspect
on these experiments is that the other proposed algorithm
CR-ALG does not perform even as well as Greedy. The ex-
planation is that we assign non-integral arrival rates to each
user. We show in the supplementary materials that when they
are assigned integral rates, CR-ALG’s performance is com-
parable to MMP-ALG and much better than Greedy. As we
further show in the supplementary materials, for the budget-
additive submodular function, however, even for fractional
rates, CR-ALG performs as well as MMP-ALG (and much
higher than the theoretical bounds). The diversity histograms
show that MMP-ALG is performs well and a good fraction
of the users have a coverage greater than 50 % and all the
way up to 90% (in the pragmatic case of b = 15, ⌘ = 5).
However, the other algorithms have a coverage of at most
20 - 30% for all users (even for the Greedy algorithm when
B = 1, ⌘ = 1 where the competitive ratio is higher than
MMP-ALG).

Figure 2: Results when the genre weights are the average of predicted ratings for users. The x-axis varies B and the y-axis
represents the ratio. (Left): ⌘ = 1, (Center): ⌘ = 3, (Right): ⌘ = 5.

Figure 3: (Left): Same as the left plot in Figure 2 with genre weight chosen U [0, 1]. (Center and Right): x-axis percentage of
coverage of genres and y-axis number of users who fall in that range.

Conclusion

In this paper, we proposed a new model, Online Submodular
bipartite matching (OSBM), which effectively captures no-
tions such as relevance and diversity in matching markets.
Many applications such as advertising, hiring diverse can-
didates, recommending movies or songs naturally fit within
this framework. We propose two algorithms, one based on
contention-resolution schemes and the other based on us-
ing the solution of the mathematical program directly; we
give theoretical guarantees on their performance. The algo-
rithm based on using the mathematical program directly is
essentially tight even for the special case of linear objec-
tives. Finally, via experiments we show that our algorithms
do well in practice. We also proposed heuristics, some of
which perform well on specialized submodular functions,
and showed that our general algorithm is competitive with
such algorithms as well.

Acknowledgements

Aravind Srinivasan’s research was supported in part by NSF
Awards CNS-1010789, CCF-1422569 and CCF-1749864,
and by research awards from Adobe, Inc. The research of
Karthik Sankararaman and Pan Xu was supported in part by
NSF Awards CNS 1010789 and CCF 1422569.

The authors would like to thank the anonymous reviewers
for their helpful feedback.

References

[2016] Adamczyk, M.; Sviridenko, M.; and Ward, J. 2016.
Submodular stochastic probing on matroids. Mathematics
of Operations Research (MoR).

[2012] Adomavicius, G., and Kwon, Y. 2012. Improving ag-
gregate recommendation diversity using ranking-based tech-
niques. IEEE TKDE.

[2004] Ageev, A. A., and Sviridenko, M. I. 2004. Pipage
rounding: A new method of constructing algorithms with
proven performance guarantee. Journal of Combinatorial
Optimization.

[2014] Agrawal, S., and Devanur, N. R. 2014. Fast algo-
rithms for online stochastic convex programming. In SODA.

[2009] Agrawal, R.; Gollapudi, S.; Halverson, A.; and Ieong,
S. 2009. Diversifying search results. In WSDM.

[2017] Ahmed, F.; Dickerson, J. P.; and Fuge, M. 2017. Di-
verse weighted bipartite b-matching. In IJCAI.

[2015] Assadi, S.; Hsu, J.; and Jabbari, S. 2015. Online as-
signment of heterogeneous tasks in crowdsourcing markets.
In AAAI-HComp.

[2014] Badanidiyuru, A.; Mirzasoleiman, B.; Karbasi, A.;
and Krause, A. 2014. Streaming submodular maximization:
Massive data summarization on the fly. In KDD.

[2012] Bansal, N.; Korula, N.; Nagarajan, V.; and Srinivasan,
A. 2012. Solving packing integer programs via randomized
rounding with alterations. Theory of Computing.

[2016] Bradley, A. P. 2016. Movielens collaborative filter-
ing. In https://github.com/bradleypallen/ keras-movielens-
cf, 2016.

[2016] Brubach, B.; Sankararaman, K. A.; Srinivasan, A.;
and Xu, P. 2016. New algorithms, better bounds, and a
novel model for online stochastic matching. ESA.

[2015] Buchbinder, N.; Feldman, M.; and Schwartz, R. 2015.

Online submodular maximization with preemption. In
SODA.

[2011] Calinescu, G.; Chekuri, C.; Pál, M.; and Vondrák, J.
2011. Maximizing a monotone submodular function subject
to a matroid constraint. SIAM Journal on Computing.

[2017] Chan, T.; Huang, Z.; Jiang, S. H.-C.; Kang, N.; and
Tang, Z. G. 2017. Online submodular maximization with
free disposal: Randomization beats 1/4 for partition ma-
troids. In SODA.

[2016] Chen, C.; Zheng, L.; Srinivasan, V.; Thomo, A.; Wu,
K.; and Sukow, A. 2016. Conflict-aware weighted bipartite
b-matching and its application to e-commerce. IEEE TKDE.

[2018] Dickerson, J. P.; Sankararaman, K. A.; Srinivasan,
A.; and Xu, P. 2018. Allocation problems in ride-sharing
platforms: Online matching with offline reusable resources.
AAAI.

[2016] Esfandiari, H.; Korula, N.; and Mirrokni, V. 2016. Bi-
objective online matching and submodular allocations. In
NIPS.

[2009] Feldman, J.; Mehta, A.; Mirrokni, V.; and Muthukr-
ishnan, S. 2009. Online stochastic matching: Beating 1-1/e.
In FOCS.

[2006] Gandhi, R.; Khuller, S.; Parthasarathy, S.; and Srini-
vasan, A. 2006. Dependent rounding and its applications to
approximation algorithms. Journal of the ACM (JACM).

[2011] Haeupler, B.; Mirrokni, V. S.; and Zadimoghaddam,
M. 2011. Online stochastic weighted matching: Improved
approximation algorithms. In WINE.

[2016] Harper, F. M., and Konstan, J. A. 2016. The movie-
lens datasets: History and context. ACM Transactions on
Interactive Intelligent Systems (TiiS) 5(4):19.

[2012] Ho, C.-J., and Vaughan, J. W. 2012. Online task as-
signment in crowdsourcing markets. In AAAI.

[2013] Hong, W.; Li, L.; Li, T.; and Pan, W. 2013. iHR: an
online recruiting system for Xiamen Talent Service Center.
In KDD.

[2013] Jaillet, P., and Lu, X. 2013. Online stochastic match-
ing: New algorithms with better bounds. Mathematics of
Operations Research (MoR).

[2013] Kapralov, M.; Post, I.; and Vondrák, J. 2013. Online
submodular welfare maximization: Greedy is optimal. In
SODA.

[2017] Karimi, M.; Lucic, M.; Hassani, H.; and Krause, A.
2017. Stochastic submodular maximization: The case of
coverage functions. In NIPS.

[1990] Karp, R. M.; Vazirani, U. V.; and Vazirani, V. V. 1990.
An optimal algorithm for on-line bipartite matching. In
STOC.

[2010] Lee, J.; Sviridenko, M.; and Vondrák, J. 2010. Sub-
modular maximization over multiple matroids via general-
ized exchange properties. Mathematics of Operations Re-
search (MoR).

[2012] Manshadi, V. H.; Gharan, S. O.; and Saberi, A. 2012.
Online stochastic matching: Online actions based on offline
statistics. Mathematics of Operations Research (MoR).

[2012] Mehta, A. 2012. Online matching and ad allocation.
Theoretical Computer Science.

[2016] Mirzasoleiman, B.; Badanidiyuru, A.; and Karbasi,
A. 2016. Fast constrained submodular maximization: Per-
sonalized data summarization. In ICML.

[2016] Mirzasoleiman, B.; Karbasi, A.; Sarkar, R.; and
Krause, A. 2016. Distributed submodular maximization.
JMLR.

[2018] Mirzasoleiman, B.; Jegelka, S.; and Krause, A. 2018.
Streaming non-monotone submodular maximization: Per-
sonalized video summarization on the fly. AAAI.

[1978] Nemhauser, G. L., and Wolsey, L. A. 1978. Best
algorithms for approximating the maximum of a submodular
set function. Mathematics of Operations Research (MOR).

[1978] Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L.
1978. An analysis of approximations for maximizing sub-
modular set functions?i. Mathematical Programming.

[2017] Sarpatwar, K. K.; Schieber, B.; and Shachnai, H.
2017. Interleaved algorithms for constrained submodular
function maximization. arXiv preprint arXiv:1705.06319.

[2013] Singer, Y., and Mittal, M. 2013. Pricing mechanisms
for crowdsourcing markets. In WWW.

[2013] Singla, A., and Krause, A. 2013. Truthful incentives
in crowdsourcing tasks using regret minimization mecha-
nisms. In WWW.

[2017] Stan, S.; Zadimoghaddam, M.; Krause, A.; and Kar-
basi, A. 2017. Probabilistic submodular maximization in
sub-linear time. In ICML.

[2015] Subramanian, A.; Kanth, G. S.; Moharir, S.; and Vaze,
R. 2015. Online incentive mechanism design for smartphone
crowd-sourcing. In WiOPT.

[2016a] Tong, Y.; She, J.; Ding, B.; Chen, L.; Wo, T.; and Xu,
K. 2016a. Online minimum matching in real-time spatial
data: experiments and analysis. Proceedings of the VLDB
Endowment.

[2016b] Tong, Y.; She, J.; Ding, B.; Wang, L.; and Chen,
L. 2016b. Online mobile micro-task allocation in spatial
crowdsourcing. In ICDE.

[2017] Tong, Y.; Wang, L.; Zhou, Z.; Ding, B.; Chen, L.; Ye,
J.; and Xu, K. 2017. Flexible online task assignment in
real-time spatial data. Proc. VLDB Endow.

[2014] Tschiatschek, S.; Iyer, R. K.; Wei, H.; and Bilmes,
J. A. 2014. Learning mixtures of submodular functions for
image collection summarization. In NIPS.

[1980] Vanderbei, R. J. 1980. The optimal choice of a sub-
set of a population. Mathematics of Operations Research
(MoR).

[2011] Vondrák, J.; Chekuri, C.; and Zenklusen, R. 2011.
Submodular function maximization via the multilinear re-
laxation and contention resolution schemes. In STOC.

[2015] Wei, K.; Iyer, R.; and Bilmes, J. 2015. Submodularity
in data subset selection and active learning. In ICML.

[2014] Zhao, D.; Li, X.-Y.; and Ma, H. 2014. How to crowd-
source tasks truthfully without sacrificing utility: Online in-
centive mechanisms with budget constraint. In INFOCOM.

Supplementary Materials

Details on prior work on submodularity

As discussed in the preliminaries of the main section, we incorporate ideas from prior work on submodularity. In particular we
use the following theorem from (Bansal et al. 2012) and its extension called contention-resolution schemes ((Vondrák, Chekuri,
and Zenklusen 2011)).
Theorem 3. ((Bansal et al. 2012)) Let f be a non-negative monotone submodular function over E with |E| = m. Given a
fractional vector x 2 [0, 1]

m, let X = (Xe)e2E be a random binary vector such that each Xe is a Bernoulli random variable
with mean xe. Suppose Z X is another random binary vector satisfying the following properties (1) & (2) for some ↵. Then
we have that E[f(Z)] � ↵E[f(X)].

1. Marginal Property: Pr[Ze = 1|Xe = 1] � ↵.

2. Monotonicity Property: Pr[Ze = 1|X = a] � Pr[Ze = 1|X = b], 8a b 2 {0, 1}m, 8e 2 Supp(a) = {e0 : ae0 = 1}.

By definition of the multilinear extension we have that E[f(X)] = F (x). Thus the theorem can be viewed as conditions when
“linearity of expectation” can be applied to F .

Submodular Welfare Maximization (SWM) as a special case of our problem

We will now show how we can reduce the SWM problem to our model. Recall that the SWM problem is defined as follows.
We have n vertices in U which are available offline. With each vertex u 2 U we have a monotone submodular function
gu : 2

V ! R associated with it. When a vertex v arrives we need to match v to one of its neighbors in U . At the end of the
online phase, let S1, S2, . . . , Sn be the set of vertices assigned to vertices 1, 2, . . . , n respectively. The goal is to maximize the
sum

Pn
i=1 wi(Si).

Note that sum of submodular functions is a submodular function. Hence to make the objective function of SWM fit our
framework, we do the following. Let Eu denote the set of edges incident to u. Define a function g̃u : Eu ! R. For any subset
S ⇢ Eu, we let g̃(S) := g(Sv) where Sv is the set of endpoints of S in V . The non-trivial part to handle is that in SWM any
vertex in U can be matched multiple times, while in our setting we allow any U to be matched exactly once. We can overcome
this by creating additional vertices as follows. For any u 2 U , create |�(u)|⇤T copies. A copy, indexed by v 2 �(u) and t 2 [T]

has an edge only to v. Additionally, wlog we can enforce that at time t, an algorithm can be matched to vertices whose copy
is indexed by t (this doesn’t change the optimal value). Therefore, we now have an instance with a submodular objective and
matching constraints.

Consider an arrival sequence ⌧ . Let the optimal allocation in SWM under this arrival be S⌧,1, S⌧,2, . . . , S⌧,n at times
T1, T2, . . . , Tn. Then note that by considering the edges (uS⌧,i,T⌧,i , S⌧,i) yields the same value to the objective in the OSBM

model. Additionally, note that the above argument also holds in the other direction since there is a one-to-one mapping between
the two optimal solutions.

Proof of Lemma 1

Proof. Observe that the polytope P defined by Constraints (2)-(4) is downward closed. By Lemma 4 in (Adamczyk, Sviridenko,
and Ward 2016), we can apply continuous greedy algorithm to get an approximation solution x⇤ such that x⇤ is feasible to P
and F (x⇤

) � (1� 1/e)maxy2P f
+
(y), where f

+ is the concave closure of f . For each given y 2 P , by definition f
+
(y) is

the maximum value of E[f(R)] over all possible random sets R satisfying the marginal distribution that Pr[e 2 R] ye for
each e. Thus we conclude that maxy2P f

+
(y) is an upper bound of the offline optimal and hence proving our claim.

Proof of Theorem 1

Proof. Let Z = (Ze) be the indicator vector for e being matched in the CR-ALG and let X be as defined in Theorem 3
with x = x⇤ where x⇤ is the optimal solution to the offline program. We show that Z satisfies the two properties stated in
Theorem 3 with ↵ =

1
2 (1 � e

�1/2
). Hence we have that E[f(Z)] � ↵E[f(X)]. Moreover observe that E[f(X)] = F (x⇤

) �
(1� 1/e)E[OPT]. Combining these two facts proves Theorem 1.

Consider an edge e = (u, v) with Xe = 1. Let |EX(u)| = k1 and |EX(v)| = k2, where k1 and k2 are the number of edges
incident to u and v in X12 including e, respectively. A sufficient condition for Ze = 1 given Xe = 1, |EX(u)| = k1, |EX(v)| =
k2 is that Ye = 1 in this conditional space and that Ze = 1 given that Ye = 1. Thus we have,

Pr[Ze = 1

��� Xe = 1, |EX(u)| = k1, |EX(v)| = k2]

� Pr[Ye = 1

��� Xe = 1, |EX(u)| = k1] ⇤ Pr[Ze = 1

��� Ye = 1, |EX(v)| = k2, |EX(u)| = k1]

=
1
k1

PT
t=1

1
T

1
k2

⇣
1� 1

T ·k2

⌘t�1
=

1
k1

⇣
1� exp

�
� 1

k2

�⌘
.

12More precisely, we consider the sub-graph induced by the edges e with Xe = 1.

In the second-last equality we used the fact that Ye = 1 is set uniformly for every edge e 2 E(u) and thus Pr[Ye =

1

��� Xe = 1, |EX(u)| = k1] =
1
k1

. Moreover we claimed that Pr[Ze = 1

��� Ye = 1, |EX(v)| = k2, |EX(u)| = k1] =

PT
t=1

1
T

1
k2

⇣
1� 1

T ·k2

⌘t�1
. The argument is as follows. Consider a given e = (u, v) with Ye = 1. Note that from the algorithm,

the only vertex u can be matched to is a previous arrival of v. At a given time-step t 2 [T], this happens with probability 1
k2|V | .

Moreover from the integral arrival rates assumption wlog we have that |V | = T . Thus the probability at u is safe at t 2 [T]

is
⇣
1 � 1

T ·k2

⌘t�1
. The probability that v arrives at t 2 [T] and is assigned to u is 1

k2|V | . The event that (u, v) is matched

is mutually exclusive across the T time-steps. Putting these arguments together we get that Pr[Ze = 1

��� Ye = 1, |EX(v)| =

k2, |EX(u)| = k1] =
PT

t=1
1
T

1
k2

⇣
1� 1

T ·k2

⌘t�1
.

Given the above derivation, we are now ready to prove the two properties. First we show that the Marginal Property holds
with ↵ = (1 � e

�1/2
). Notice that E[k1] = 1 +

P
e02E(u),e0 6=e x

⇤
e0 2 and E[k2] = 1 +

P
e02E(v),e0 6=e x

⇤
e0 rv = 2, since

x⇤
= (x

⇤
e) is feasible to MMP (1). Also the two functions, 1

k1
and

⇣
1 � exp

�
� 1

k2

�⌘
, are convex in k1 and k2 respectively.

Thus by Jensen’s inequality, we have the following.

Pr[Ze = 1|Xe = 1] � Ek1,k2

h
Pr[Ze = 1

��� Xe = 1, |EX(u)| = k1, |EX(v)| = k2]
i
� 1

2

⇣
1� e�1/2

⌘
.
= ↵

The Monotonicity Property can be derived from the fact that 1
k1

and
⇣
1�exp

�
� 1

k2

�⌘
are decreasing in k1 and k2 respectively.

Thus we are done.

Full Proof of Theorem 2

The bounds in Theorem 2 comes from two parts. The first (1 � 1/e) factor is obtained from approximately solving MMP

(1) offline while the second (1 � 1/e) factor is the ratio obtained because of the online nature of the problem. Note that our
online analysis is tight: MMP-ALG losses at least one factor of (1 � 1/e) during the online stage even when f is linear. We
first provide a sketch here and then prove it in detail. Recall that X denotes the indicator for whether an edge is matched. The
notations for this proof are overloaded and hence different from that in Theorem 1.

Proof sketch. For each u, let Iu indicate if u is finally matched (Iu = 1) after the T online rounds. Set x⇤
u =

P
e2E(u) x

⇤
e . We

then prove the following.

Lemma 2. {Iu : u 2 U} are asymptotically independent with each Pr[Iu = 1] = 1� e
�x⇤

u when T ! 1 and |U | = o(
p
T).

Let X 2 {0, 1}m be the indicator vector for e being matched in MMP-ALG. Let Xu 2 {0, 1}m be the restriction of X onto
the block E(u) with remaining entries all zeros such that X =

P
u2U Xu. W.l.o.g. assume that the edges are grouped by blocks

of E(u) for all u 2 U : the first few entries of X corresponds to some E(u) followed by another E(u
0
) and so on. Let 1e be an

m-dimensional unit vector with a 1 only at coordinate e. Lemma 3 characterizes the distribution of Xu.

Lemma 3. Pr[Xu = 0] = e
�x⇤

u , Pr[Xu = 1e] = (1� e
�x⇤

u)
x⇤
e

x⇤
u
, 8e 2 E(u)

Combining Lemmas 2 and 3, we can view X alternatively as follows. First, start with an arbitrary vector A of dimension
m. Then update the first block of A corresponding to some E(u) by setting Au = 0 with probability e

�x⇤
u and Au = 1e

with probability
⇣
1 � e

�x⇤
u

⌘
x⇤
e

x⇤
u

, for every e 2 E(u) (denote this procedure as (*)). Now apply (*) to the remaining blocks
one-by-one independently. Set X = A at the end of this process.

In order to get the desired lower bound on E[f(X)] we consider the following random vector Y. Set Ye = 1 with probability
(1 � 1/e)x

⇤
e and with the remaining probability set it to be 0. From Lemma 4.2 in (Bansal et al. 2012), this implies that

E[f(Y)] = F (Y) � (1� 1/e)F (x⇤
). The main idea of the proof is to show that after every update of (*) the invariant that the

value of E[f(X)] is at least as large as F (Y) continues to hold. Thus the final random vector X satisfies that E[f(X)] � F (Y).
Thus we get E[f(X)] � F (Y) � (1� 1/e)F (x⇤

). This proves Theorem 2 since F (x⇤
) � (1� 1/e)E[OPT].

Proof of Lemma 2

Proof. Consider a given u. Notice that in each round t, u is assigned to a neighboring edge in E(u) with probability x
⇤
u/T . Thus

after T online rounds it gets assigned at least once with probability 1�
⇣
1�x

⇤
u/T

⌘T
⇠ 1�e

�x⇤
u . Now we prove the statement

about the independence for different u. Consider two given disjoint subsets U1 and U2 and a given vertex u /2 U1 [U2, we

show that

Pr

h
Iu = x

���
^

w2U1

⇣
Iw = 1

⌘ ^

w2U2

⇣
Iw = 0

⌘i
= Pr[Iu = x], 8x 2 {0, 1}

For event
V

w2U2

⇣
Iw = 0

⌘
to occur, a sufficient condition is that in each round, no edge from

S
w2U2

E(w) arrives. This

occurs with probability 1 �
P

w2U2
x
⇤
u/T . For event

V
w2U1

⇣
Iw = 1

⌘
to occur a sufficient condition is that in some rounds

only the vertices in U1 are assigned. For each w 2 U1, let Nw be the number of assignments received by w during the T online
rounds, i.e., the number of times w gets assigned an edge by MMP-ALG (irrespective of whether it is eventually matched or
not). Observe that Nw ⇠ Pois(x

⇤
w) when T is large. We can verify that 13

Pr[Nw > lnT] = O(T
�2

).
Thus with probability 1�O(|U | ⇤ T�2

) = 1� o(T
�1

), Nw is no larger than lnT for all w 2 U1. Hence with a probability
of at least 1 � o(T

�1
), the total number of rounds reserved for the shots of vertices in U1 is at most |U | ⇤ lnT . Thus, with

probability a probability at least 1� o(T
�1

), we have the following.

1� x

⇤
u/T

1�
P

w2U1[U2
x⇤
w/T

!T

 Pr

h
Iu = 0

���
^

w2U1

⇣
Iw = 1

⌘ ^

w2U2

⇣
Iw = 0

⌘i

1� x

⇤
u/T

1�
P

w2U1[U2
x⇤
w/T

!T�|U |⇤lnT

Note that both sides of the inequality approaches e�x⇤
u when |U | = o(

p
T) and T ! 1. Thus we are done.

Proof of Lemma 3

Proof. The first part of the Lemma follows directly from Lemma 2 with Iu = 0. We will now prove the second part. Let Iu,t
indicate that u is matched (for the first time) at time t. Consider a given e 2 E(u).

Pr[Xu = 1e|Iu = 1] =

TX

t=1

Pr[Xu = 1e|Iu,t = 1] · Pr[Iu,t = 1|Iu = 1]

=

TX

t=1

x
⇤
e/TP

e02E(u) x
⇤
e0/T

· Pr[Iu,t = 1|Iu = 1]

=
x
⇤
e

x⇤
u

The second equality follows from the following argument. In each time t, u will be assigned an edge e0 2 E(u) with probability
x
⇤
e0/T . Thus conditioning on the event that u gets matched at t, the conditional probability that u gets matched by edge e is

exactly x⇤
e/TP

e02E(u) x
⇤
e0/T

. Therefore we have

Pr[Xu = 1e] = Pr[Xu = 1e|Iu = 1] · Pr[Iu = 1] =

⇣
1� e

�x⇤
u

⌘
x
⇤
e

x⇤
u

.

Theorem 4. E[f(X)] � (1� 1/e)F (x⇤
)

Proof. Let Y,A be as defined in the proof sketch above. Let Z be the random vector obtained after updating the first block of
A, say E(u). We show that E[f(Z)] � F (A). Let R = (1� 1/e)x⇤.

Let R�u 2 [0, 1]
m be the restriction of R onto all blocks other than E(u) (hence the entries in the block E(u) are all zeroes).

Note that both R and R�u have the same length m. Let R�u be the random indicator vector to denote whether an edge was
sampled (independently with probability according to R�u).

13https://eventuallyalmosteverywhere.wordpress.com/2013/02/26/poisson-tails/

From the above analysis, we have the following.

E[f(Z)] (5)

=
P

e2E(u)

⇣
1� e

�x⇤
u

⌘
x⇤
e

x⇤
u
F (R�u + 1e) + e

�x⇤
uF (R�u) (6)

�
P

e2E(u)(1� 1/e)x
⇤
eF (R�u + 1e) +

⇣
1� (1� 1/e)x

⇤
u

⌘
F (R�u) (7)

=
P

e2E(u)(1� 1/e)x
⇤
e

⇣P
a Pr[R�u = a]F (a+ 1e)

⌘

+

⇣
1� (1� 1/e)x

⇤
u

⌘⇣X

a

Pr[R�u = a]F (a)
⌘

(8)

=
P

a Pr[R�u = a]
⇣P

e2E(u)(1� 1/e)x
⇤
eF (a+ 1e) +

�
1� (1� 1/e)x

⇤
u

�
F (a)

⌘
(9)

Inequality (7) is due to the monotonicity of f : we have that F is non-decreasing over each entry and thus F (R�u + 1e) �
F (R�u) for all e; note that the probability mass distributed over each F (R�u + 1e) is

⇣
1 � e

�x⇤
u

⌘
x⇤
e

x⇤
u
� (1 � 1/e)x

⇤
e and

thus by squeezing the surplus mass from each lower bound to the last item F (R�u), we get our claim. Inequality (8) follows
directly from the definition of the multilinear extension F .

For a given realization a of R�u, define a set function ga over E(u) as follows. Consider a given binary vector b0 2
{0, 1}|E(u)|. For notational convenience, we extend b0 to a vector of length of m by filling the remaining entries as 0; let b be
the resultant vector. Define ga(b0

) = f(a + b) for each b0 2 {0, 1}|E(u)|. From Lemma 4, we have that each given a, ga is a
monotone submodular set function over E(u). Let Ru 2 [0, 1]

m be the restriction of R onto the block E(u) with the remaining
entires being 0 and R0

u 2 [0, 1]
|E(u)| be the truncated version of Ru onto E(u). Let Ga be the multilinear extension of ga.

Focus on the second part of the expression in (9).

⇤
.
=

X

e2E(u)

(1� 1/e)x⇤
eF (a+ 1e) +

�
1� (1� 1/e)x⇤

u

�
F (a) (10)

=

X

e2E(u)

(1� 1/e)x⇤
ega(1

0
e) +

�
1� (1� 1/e)x⇤

u

�
ga(0) (11)

� Ga(Y
0
u) (12)

=

X

b0

Pr[R0
u = b0

]ga(b
0
) (13)

=

X

b

Pr[Ru = b]f(a+ b) (14)

In (11), both 10
e (elementary vector of e) and 0 have the same length |E(u)|. Recall that R = (1 � 1/e)x⇤ and thus

R0
u =

⇣
(1� /e)x

⇤
e : u 2 E(u)

⌘
. Inequality (12) follows from applying Lemma 5,as shown later, to the function ga and R0

u. In

equalities (13) and (14), R0
u 2 {0, 1}|E(u)| and Ru 2 {0, 1}m are the respective random indicator vectors denoting if an edge

was sampled (independently according to R0
u and Ru). The two equalities (13) and (14) follow directly from the definitions of

ga and Ga.
Substituting the result in (14) back to (9), we have that

E[f(Z)] �
X

a

Pr[R�u = a]
X

b

Pr[Ru = b]f(a+ b) = E[f(Y)] = F (Y).

By applying the above analysis repeatedly to each block E(u), we have that the final random integral vector Z is same as X
and that it satisfies E[f(X)] � F (Y) � (1� 1/e)F (x⇤

).

Technical Lemmas

Throughout this section, we assume f is a general non-negative monotone submodular function over the ground set [m] =

{1, 2, · · · ,m}. Consider a given subset S ✓ [m] and define gS as a set function over [m]�S as follows: for each S
0 ✓ [m]�S,

gS(S
0
) = f(S [S

0
).

Lemma 4. For each given S ✓ [m], gS is a monotone submodular function over [m]� S.

Proof. Consider any two subsets S0
1, S

0
2 ✓ [m]� S. Observe that

gS(S
0
1) + gS(S

0
2) = f(S [S

0
1) + f(S [S

0
2)

� f

⇣
S

[⇣
S
0
1 [S

0
2

⌘⌘
+ f

⇣
S

[⇣
S
0
1 \ S

0
2

⌘⌘

= gS(S
0
1 [S

0
2) + gS(S

0
1 \ S

0
2)

Thus by definition, we have that gS is submodular. The monotonicity of gS follows directly from that of f .
Let F be the the multilinear extension of f . Consider a given vector x 2 [0, 1]

m such that
P

i2[m] xi 1. Let 1i 2 {0, 1}m
be the standard unit vector such that only the entry at position i is 1 and all rest are 0.

Lemma 5. F (x)
Pm

i=1 xif(1i) + (1�
Pm

i=1 xi)f(0)

Proof. We prove by induction on m. For the base case m = 1, we can verify that the inequality becomes tight from the
definition of F . Now assume our claim is valid for all m k � 1. Consider the case m = k.

Let x�k 2 [0, 1]
k be the restriction of x onto the first k� 1 coordinates with the last entry being 0. Similarly let xk 2 [0, 1]

k

be the restriction of x onto the last coordinate. Note that both x�k and xk have the same length x such that x = x�k + xk. We
then have the following, which completes the proof.

F (x) = F (x�k + xk) (15)
= xkF (x�k + 1k) + (1� xk)F (x�k) (16)

 xk

⇣
F (x�k) + f(1k)� f(0)

⌘
+ (1� xk)F (x�k) (17)

= F (x�k) + xk

⇣
f(1k)� f(0)

⌘
(18)

k�1X

i=1

xif(1i) + (1�
k�1X

i=1

xi)f(0) + xk

⇣
f(1k)� f(0)

⌘
(19)

=

kX

i=1

xif(1i) + (1�
kX

i=1

xi)f(0) (20)

Equality (16) follows from the definition of F ; Inequality(17) can be proved as follows. Let X�k be the random indicate
vector to denote if an element was sampled (independently according to x�k). For every realization X�k = a 2 {0, 1}k, we
have that f(a+ 1k) f(a) + f(1k)� f(0), since a and 1k represents two disjoint sets over [k]. Thus by taking expectation
over X�k, we get the Inequality (17). Inequality (19) follows from the inductive hypothesis.

Supplementary section for experiments

Mathematical Program for the experiments in main section

Recall that with every vertex v, there was a weighted coverage function fv : 2
E ! R associated. The objective was

P
v2V fv .

Our offline program can be reformulated using the epigraph form of the mathematical program and reduces to the following
Linear Program. Let [g] denote the set of genres and we use z to index into each genre.

maximize
P

v2V

P
z2[g] wz,v�z,v (21)

subject to
P

e2E(v) xe ⌘ ⇤ rv 8v 2 V (22)
P

e2E(u) xe B 8u 2 U (23)

0 xe 1 8e 2 E (24)

�z,v
X

e2�(v):qe[z]=1

xe 8z 2 [g], v 2 V (25)

�z,v 1 8z 2 [g], v 2 V (26)
Since (21) is a linear program, we can use standard tools to solve this linear program exactly.

Additional experiment for MovieLens dataset with integral arrival rates

Here we describe an additional experiment on the MovieLens dataset. We consider the case of ⌘ = 1 and compare the perfor-
mance of various algorithms. The experimental setting is the same as that described in the main section. The key difference is
that here we let every user come with probability 1/T at each time-step. Hence T = |V | = 200 in these experiments. Figure 4
plots the performance for varying b. As seen in the plot, both MMP-ALG and CR-ALG comprehensively beats the baselines
under this setting.

Figure 4: Comparing algorithms with ⌘ = 1 on MovieLens dataset with integral arrival rates (i.e., rv = 1)

Experiments on Synthetic Data

We now describe our experimental results on synthetic data. The landscape of this problem is vast and we do not aim to be
exhaustive. Instead, we focus on two important submodular functions, namely the budget-additive function and the coverage
function (both defined in the preliminaries). We consider the same setting as the experiments in the main section. For both these
special cases, the offline program can be reduced to a linear program (LP) which can be solved efficiently.

Offline programs. We will now describe the offline programs for these two objectives. In our experiments, we use the optimal
solution of these respective programs for both benchmark of the offline as well as a guide to our online algorithms.

1. Budget-additive function. We want to solve the following mathematical program as our offline benchmark.
maximize min{B,

P
e2E wexe} (27)

subject to
P

e2E(v) xe rv 8v 2 V (28)
P

e2E(u) xe 1 8u 2 U (29)

0 xe 1 8e 2 E (30)
This can be converted to a LP using a standard transformation (similar to the epigraph form of convex programs) as follows.

maximize � (31)
subject to

P
e2E(v) xe rv 8v 2 V (32)

P
e2E(u) xe 1 8u 2 U (33)

0 xe 1 8e 2 E (34)
�

P
e2E wexe (35)

� B (36)
2. Coverage function. Similar to above we can convert it to a standard LP form and here we directly describe the final form.

Every edge is associated with a binary feature-vector qe of dimension g. Weight of the z
th dimension is represented as wz .

maximize
P

z2[g] wz�z (37)

subject to
P

e2E(v) xe rv 8v 2 V (38)
P

e2E(u) xe 1 8u 2 U (39)

0 xe 1 8e 2 E (40)

�z
X

e2E:qe[z]=1

xe 8z 2 [g] (41)

�z 1 8z 2 [g] (42)

Dataset. We use a simulated dataset for our experimental purposes as follows. First simulate an instance of the graph and then
simulate the arrival sequence. For both objectives, we associate the online type with an arrival rate chosen uniformly at random

(a) Comparing algorithms on the budget-additive function. x
and y-axes represent the b value in b-matching and competitive
ratio respectively.

(b) Comparing algorithms on the coverage function.

in the range [0, 1]. Then simulate the arrival process based on these rates. The edges are chosen as follows. For every online
type, we set a random set of at most 10 vertices in the offline side as its neighbor and edges between this online type and
those offline vertices. We consider the b-matching scenario and vary b in the set {1, 2, 3, 5, 10, 15}. The cardinalities of offline
vertices and online vertices vary based on the experiment which we will describe below.

1. Coverage function. For this experiment, the number of offline vertices to be 40 and the number of online types to be 200.
The time-horizon is set to 1000 (hence a lot of time-steps has no arrival of a online vertex). Each offline and online type is
associated with a random subset, of size at most 10, of {1, 2, . . . , 1000} as the set of features. For every edge e = (u, v), the
feature vector qe associated with it is given by the union of the features of its end-points u and v. Every feature in [1000] is
associated with a weight chosen uniformly at random in the interval [0, 1].

2. Budget-additive function. In this experiment, the number of offline vertices to be 100 and the number of online types to be
200. The time-horizon is 200. For every edge e we choose a random number uniformly in [0, 1] and set the weight we as this
random number. We set the budget B = 50.

Results. Figures 5a and 5b plot the results of the experiments on the budget-additive function and coverage function, re-
spectively. In budget-additive case, our algorithms MMP-ALG and CR-ALG significantly outperform the heuristic baselines,
namely, greedy and NEG-CR. Additionally the competitive ratios of our algorithm are much higher than the theoretical bench-
mark (0.63 and 0.20 respectively). Note that as b increases for our experimental parameters the competitive ratios only slightly
increase. In the coverage function scenario, we see that greedy out-performs both our algorithms when b is small. But as soon as
b is slightly increased, our algorithm matches the performance of Greedy. This suggests that for very special coverage functions
one might be able to construct algorithms that do better. However, even on such cases our general algorithm is very competitive.
In this scenario, increasing the value of b has a larger effect than before, on the competitive ratio, yet not drastically larger. These
experiments are a further evidence to support that analysis on b = 1 gives a good proxy for understanding the performance on
larger b.

