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Abstract

Clustering is a fundamental unsupervised learning problem where a dataset is
partitioned into clusters that consist of nearby points in a metric space. A recent
variant, fair clustering, associates a color with each point representing its group
membership and requires that each color has (approximately) equal representation
in each cluster to satisfy group fairness. In this model, the cost of the clustering
objective increases due to enforcing fairness in the algorithm. The relative increase
in the cost, the “price of fairness,” can indeed be unbounded. Therefore, in this
paper we propose to treat an upper bound on the clustering objective as a constraint
on the clustering problem, and to maximize equality of representation subject to it.
We consider two fairness objectives: the group utilitarian objective and the group
egalitarian objective, as well as the group leximin objective which generalizes
the group egalitarian objective. We derive fundamental lower bounds on the
approximation of the utilitarian and egalitarian objectives and introduce algorithms
with provable guarantees for them. For the leximin objective we introduce an
effective heuristic algorithm. We further derive impossibility results for other
natural fairness objectives. We conclude with experimental results on real-world
datasets that demonstrate the validity of our algorithms.

1 Introduction

Machine learning algorithms are increasingly being applied to settings that directly influence human
lives. This has spurred a growing fair machine learning community [9], which develops machine
learning algorithms that are made to satisfy certain fairness criteria. Choosing an appropriate
definition of fairness—and even deciding if explicitly defining fairness is appropriate to begin with—
is a morally-laden and application-specific decision [28, 43]. We make no normative statements here;
rather, we focus on a commonly-used and often legally-backed family of fairness definitions—group
fairness—in the context of clustering, arguably the most fundamental unsupervised learning problem.

A recent group-membership fairness definition, called fair clustering in the literature, has received
significant interest [20, 10, 11, 2, 7, 31, 22, 8, 3, 33, 1]. In fair clustering, each point has a color that
designates its group membership, and a clustering objective such as k-median or k-means is given.
The goal is to find a clustering that minimizes the objective subject to the constraint that each cluster
has each color represented within some pre-specified proportions. For example, there may be two
colors, red and blue, and the constraint could require per-color representation between 40% and 60%.

An acknowledged fact in fair clustering—and, indeed, in many allocation and matching settings—is
that the fairness (e.g., proportion) constraint could cause degradation in the clustering objective [12,
19]. A point may be assigned to a further away center (cluster) to satisfy the proportion constraint [20].
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The degradation in the objective due to the imposed fairness constraint is called the price of fairness
(PoF), mathematically defined as PoF = (cost of fair solution) / (cost of agnostic solution).
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Figure 1: Comparison between group fair
(left) and color-blind (right) clustering. Un-
like color-blind clusters, group fair clusters
may combine faraway points (bottom-left).

Unlike some examples in the literature [12, 21], the price
of fairness in the case of fair clustering is unbounded, as
seen in Figure 1. By enforcing a form of group fairness
requiring an even split across colors in each cluster, a fair
clustering algorithm would perform arbitrarily poorly as
the two groups of points separate in space, while a “color-
blind” algorithm would remain unchanged (bottom-left
and bottom-right of Figure 1, respectively). The possibly
unbounded increase in the clustering cost (unbounded
price of fairness) indicates that fair clustering can yield
clusters consisting of points that are far apart in the metric
space instead of combining nearby points—often the main
motivation behind clustering in machine learning and data
analysis. Furthermore, the legal notion of disparate impact does not force an organization to output
a fair clustering if it can justify an unfair one due to “business necessity,” i.e., potential loss in
quality [45, 44]. This possible conflict between the clustering objective and the fairness constraint
indicates the need for fair clustering algorithms that operate in a setting where the clustering cost
cannot exceed a pre-set upper bound.

Our Contributions. In this paper, we address fair clustering under an exogenous threshold on the
clustering objective. We formulate the problem mathematically in a general setting that captures all
of the traditional k-clustering objectives, i.e. k-center, k-median, and k-means. Throughout, we focus
on two general formulations of group fairness: GROUP-UTILITARIAN and GROUP-EGALITARIAN,
along with the GROUP-LEXIMIN objective which generalizes the traditional GROUP-EGALITARIAN
definition. We show that these objectives lead to problems that are NP-hard in general. Further,
assuming P 6= NP we derive lower bounds on the additive approximation of any polynomial
time algorithm for the GROUP-UTILITARIAN and GROUP-EGALITARIAN objectives. We provide
bi-criteria approximation algorithms for the GROUP-UTILITARIAN and GROUP-EGALITARIAN
objectives in which the constraint has a bounded violation and the objective is bounded from the
optimal value by an additive error. For the GROUP-LEXIMIN objective we provide an effective
heuristic. Further, we consider other possibly more “flexible” fairness objectives, but demonstrate
inapproximability results for them. Finally, we test the performance of our algorithms on a collection
of datasets and see that we obtain good solutions with low “fairness violations.” We note that due to
the page limit, all proofs are placed in Appendix A.

2 Related Work

The metric clustering problems k-center, k-median, and k-means are fundamental in unsupervised
learning and operations research. All are NP-hard with a long line of research on approximation
algorithms. For k-center, two distinct algorithms achieve a 2-approximation which is tight assuming
P 6= NP [26, 23, 27]. The current best approximation for k-median is a (2.675 + ε)-approximation
in nO((1/ε) log(1/ε)) time [18], and for k-means, there is a 6.357-approximation [4].

The fair clustering problem with group fairness constraints was proposed by [20]. They studied
k-center and k-median in a setting with only two colors. Followup work by [11, 10, 7, 31] gave
extensions to the k-means objective, more than two colors, multi-color points (i.e., intersecting
demographic groups), and scalability. Other works by [38, 15, 16] look at non-group-fairness
definitions; the former investigates individual fairness, while the latter two address probabilistic
fairness guarantees for pairs or communities of points. The aforementioned works optimize the
clustering objective subject to fairness constraints; however, satisfying the fairness constraints may
come at the expense of a significant increase in the clustering objective. Accordingly [48] and
very recently [37] explored the cost/fairness tradeoff, but using a multi-objective approach. Unlike
our work they do not establish approximation guarantees. Further, the fairness objectives used are
different from ours, i.e. in [48] the fairness objective is penalized for proportions that are not precisely
equal to the population level while in [37] it is penalized for color ratios that are not equal to 1.
Moreover, in [48] the cost/fairness tradeoff is a non-monotone function of a parameter which the user
must adjust, while [37] only focuses on the k-means objective and provides convergence guarantees
only for a smoothed version of the original problem.
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We focus on the formal tradeoff between fairness and the clustering objective. We note that the
clustering objective can be replaced by the price of fairness (PoF). However, in our setting, the
results are clearer if we refer to the clustering objective instead of the PoF. Ultimately a higher PoF
corresponds to a weakly higher fair clustering objective and vice versa. In fact, they are multiples
of one another: PoF = (cost of fair solution) / (cost of agnostic solution). This tradeoff between
fairness and efficiency manifested the PoF concept, in operations research by [12] and simultaneously
in computer science by [19], showing general approaches to defining and measuring it. Similar to our
work, others have adapted PoF as a hard constraint in emergency response [30], organ allocation [39],
and rideshare [36, 42], and a partial constraint in scarce resource allocation for kidney dialysis [29]
and organ exchange [40]. We propose a framework for balancing PoF for a traditional “efficient”
objective in clustering, which finds application in areas such as advertising, network analysis, and
data summarization.

3 Preliminaries
In a clustering problem, we are given a set of points C in a metric space. A distance function d(i, j)
specifies the distance between each pair of points i, j ∈ C. Furthermore, d is symmetric, non-negative,
and satisfies the triangle inequality. Common clustering cost (loss) functions (e.g., k-means or

k-median) can be written as min
S:|S|≤k,φ

Lkp(C) = min
S:|S|≤k,φ

(∑
j∈C d

p(j, φ(j))
)1/p

where k is the

number of clusters, S is the set of cluster centers chosen from a candidate set of centers S, and
φ : C → S is an assignment function that assigns points to cluster centers. The value p determines
the type of clustering, i.e., p =∞, 1, and 2 for k-center, k-median, and k-means, respectively.

In fair clustering, each point has a color associated with it to indicate its group membership. Specifi-
cally, we have a function χ : C → H whereH is the set of possible colors. We denote the set of all
points of color h by Ch. The fair clustering problem (FC) [20, 10, 11, 2, 7, 31, 8] is to minimize the
clustering objective while satisfying additional fairness constraints:

min
S:|S|≤k,φ

(∑
j∈C

dp(j, φ(j))
)1/p

(1a)

s.t. ∀i ∈ S,∀h ∈ H : βh| Ci | ≤ | Chi | ≤ αh| Ci | (1b)

where Ci is the set of points in cluster i and Chi ⊆ Ci is the subset of points in cluster i with color h.
βh and αh are pre-specified lower and upper proportion bounds for color h, respectively. Clearly,
0 < βh ≤ αh < 1.

In “unfair” clustering problems, the assignment function φ maps points to the nearest center in S,
i.e., φ(j) = argmini∈S d(i, j) since this minimizes the objective. However, satisfying the added
constraints in fair clustering may cause points to be assigned to clusters that are farther away. This
motivates the fair assignment problem (FA), in which the set of centers S is given and the objective
is to minimize the clustering cost subject to fairness constraints:

min
φ

(∑
j∈C

dp(j, φ(j))
)1/p

(2a)

s.t. ∀i ∈ S,∀h ∈ H : βh| Ci | ≤ | Chi | ≤ αh| Ci | (2b)
The only difference between the fair assignment (2) and fair clustering (1) problems is that S is not
an optimization variable in the fair assignment problem.

4 Fair Clustering Under a Bounded Cost (FCBC)
The fundamental idea of fair clustering under a bounded cost (FCBC) is to minimize a measure of
unfairness subject to an upper bound on the clustering cost:

min Unfairness (3a)
s.t. Clustering Cost ≤ Given upper bound (3b)

Next, we transform (3a) and (3b) above into a clear mathematical optimization problem.
The Constraint (3b): The clustering cost is

(∑
j∈C d

p(j, φ(j))
)1/p

. Let U denote the exogeneous

upper bound on clustering cost. Then, (3b) becomes
(∑

j∈C d
p(j, φ(j))

)1/p ≤ U . Note that
for the case of the k-center where p = ∞, the constraint reduces to a simpler form, specifically
∀j ∈ C, d(j, φ(j)) ≤ U .
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The Objective (3a): In prior work, a given clustering is considered fair if for each cluster, the
proportions of each color lie within pre-specified lower and upper bounds, i.e.: ∀i ∈ S, ∀h ∈ H :
βh| Ci | ≤ | Chi | ≤ αh| Ci |. However, bounding the clustering cost may make it impossible to have
a fair feasible solution. Therefore, we instead set a measure of unfairness for each color and try to
minimize this measure. Let ∆h denote the worst proportional violation across the clusters for a color
h. Specifically, for a given clustering, ∆h ∈ [0, 1] is the minimum non-negative value such that:

∀i ∈ S : (βh −∆h)| Ci | ≤ | Chi | ≤ (αh + ∆h)| Ci |. (4)

Clearly, if ∆h = 0, then color h is within the desired proportion in every cluster. Having set ∆h to
be a measure of the unfair treatment that group h receives, we are faced with the question of setting
the fairness objective, for which there are many reasonable options. We consider two prominent and
intuitive fairness objectives [14]:

GROUP-UTILITARIAN = min
∑
h∈H

∆h , GROUP-EGALITARIAN = min max
h∈H

∆h

The GROUP-UTILITARIAN objective minimizes the sum of proportional violations for all of the
colors, treating all points of a specific color as a single player in a game. The GROUP-EGALITARIAN
objective minimizes the maximum proportional violation across the colors. We also consider a more
generalized version of the GROUP-EGALITARIAN objective, the GROUP-LEXIMIN objective. Like
GROUP-EGALITARIAN, the GROUP-LEXIMIN objective minimizes the maximum (worst) violation,
but it goes further to minimizes the second-worst violation, then the third-worst violation, and so on
until no further improvement can be made. We now state the fair clustering under a bounded cost
problem (FCBC):

min
S:|S|≤k,φ

UNFAIRNESS-OBJECTIVE (5a)

s.t.
(∑
j∈C

dp(j, φ(j))
)1/p ≤ U (5b)

where the UNFAIRNESS-OBJECTIVE could equal GROUP-UTILITARIAN, GROUP-EGALITARIAN, or
GROUP-LEXIMIN. Similar to the fair assignment FA problem (2), we may define the fair assignment
under a bounded cost (FABC) problem as:

min
φ

UNFAIRNESS-OBJECTIVE (6a)

s.t.
(∑
j∈C

dp(j, φ(j))
)1/p ≤ U (6b)

where similarly the optimization is over the assignment function φ while the set of centers S is fixed.

5 Hardness of FCBC & FABC
First, we formally state the hardness of the fair clustering FC and the fair assignment FA problems.
Theorem 5.1. The fair clustering FC (1) and fair assignment FA (2) problems are NP-hard.

We now establish the hardness of fair clustering under a bounded cost FCBC and fair assignment
under a bounded cost FABC. We note that these hardness results follow for all objectives (GROUP-
UTILITARIAN, GROUP-EGALITARIAN, and GROUP-LEXIMIN).
Theorem 5.2. Fair clustering under a bounded cost FCBC and fair assignment under a bounded
cost FABC are NP-hard.

Although we have shown that both the fair clustering and fair assignment problems under a bounded
cost are NP-hard, the reductions rely on setting the upper bound U to a small enough value, precisely
that of the optimal fair clustering cost. It seems reasonable to expect both problems to transition into
being polynomial time solvable if the upper bound becomes sufficiently large. We show in Section 8
that such a result is not easy to establish and would lead to a true approximation for fair clustering
which is yet to be produced in the fair clustering literature for arbitrary metric spaces and arbitrary
lower and upper color proportion bounds.

For a given clustering cost U , there are many clusterings (solutions) of cost not exceeding U . Let SU
be the set of those solutions, i.e. if (St, φt) ∈ SU , then (St, φt) is a clustering with a cost that does
not exceed U . Further, let Lt be the size of the smallest non-empty cluster1 in the clustering (St, φt),

1An empty cluster is a cluster with no points assigned to it. This could happen if for example the assignment
function φ does not map any point to a a given center including the center itself.
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then we define L(U) to be the size of the smallest cluster across all clusterings of cost not exceeding
U , i.e. L(U) = min(St,φt)∈SU Lt. Clearly, for U1 and U2 such that U2 ≥ U1, then L(U2) ≤ L(U1)
since SU1

⊆ SU2
. We can conclude the following fact from the definition of L(U):

Fact 5.1. For a given upper bound U , no clustering with cost less than or equal to U can have less
than L(U) many points in a non-empty cluster.

We show that the quantity L(U) plays a fundamental role. In fact, lower bounds on the additive
approximation2 for the proportional violations and fairness objectives are related to L(U) as shown
in the following theorem:

Theorem 5.3. For a given instance of the FCBC or FABC problem with an arbitrary upper bound
U , unless P = NP no polynomial time algorithm can produce a solution with a cost not exceeding
U that satisfies any of the following conditions: (a) The proportional violation of any color h ∈ H is
∆h <

1
8L(U) . (b) The additive approximation for the GROUP-UTILITARIAN objective is less than

|H |
8L(U) . (c) The additive approximation for the GROUP-EGALITARIAN objective is less than 1

8L(U) .

6 Algorithms for FCBC

Our main result for the FCBC problem is the following theorem which follows as a direct conse-
quence of the guarantees of Theorems 6.2, 6.4, 6.5, 6.6, and 6.7:

Theorem 6.1. For any clustering objective, given a boundU on the clustering cost, Algorithm 1 solves
the fair clustering under a bounded cost FCBC problem at a cost of at most U ′ = (2 + α)U where
α is the approximation ratio of the color-blind clustering algorithm. The additive approximation is
|H |(ε+ 2

L(U ′) ) for the GROUP-UTILITARIAN objective and ε+ 2
L(U ′) for the GROUP-EGALITARIAN

objective.

From the theorem above, it is clear that the additive approximation guarantees we have improve when
the cost does not permit small clusters. Indeed, in the absence of outlier points and for reasonable
values of k, small clusters are unlikely to exist. Further, empirically we verify the smallest cluster
size and find that the smallest cluster size is 159 points (see Section 9.3). See Appendix C for more
discussion.

We now provide our general algorithm for fair clustering under a bounded cost FCBC which we
denote by ALG-FCBC(U,UNFAIRNESS-OBJECTIVE) where we have made explicit reference to
the dependence of ALG-FCBC on the given cost upper bound U and the desired UNFAIRNESS-
OBJECTIVE which could either be the GROUP-UTILITARIAN,GROUP-EGALITARIAN, or GROUP-
LEXIMIN objective.

ALG-FCBC(U,UNFAIRNESS-OBJECTIVE) (see Algorithm 1) involves two steps, in step (1): we
use a color-blind approximation algorithm to find the cluster centers S, in step (2): we call the
algorithm ALG-FABC(S,U ′,UNFAIRNESS-OBJECTIVE) for the FABC problem. It should be
noted that we have fed ALG-FABC the set of centers S from step (1), further the cost upper bound
for ALG-FABC is set to U ′ = (2 + α)U while the UNFAIRNESS-OBJECTIVE remains unchanged.
We further note that ALG-FABC will have the same clustering objective as ALG-FCBC, e.g. if
ALG-FCBC is given the k-median objective so well ALG-FABC.

Clearly, from algorithm ALG-FCBC the FCBC problem is closely related to the FABC problem.
In fact, we establish the following general theorem for all clustering objectives: k-center, k-median,
and k-means that shows that an algorithm which solves the FABC problem with provable guarantees
can be used to solve the FCBC problem with provable guarantees:

Theorem 6.2. For any clustering objective and both the GROUP-UTILITARIAN and GROUP-
EGALITARIAN objectives, given an algorithm that solves fair assignment under a bounded cost
FABC with additive approximation µ, the fair clustering under a bounded cost FCBC problem
can be solved with an additive approximation of µ and at a cost of at most (2 + α)U , where α is the
approximation ratio of the color-blind clustering algorithm.

2An algorithm for a minimization problem with additive approximation µ > 0, returns a value for the
objective that is at most OPT +µ where OPT is the optimal value.
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Algorithm 1 :ALG-FCBC(U,UNFAIRNESS-OBJECTIVE)

1: Choose a set of centers S by running a color-blind clustering algorithm of approximation ratio α.
2: Set U ′ = (2 + α)U and call ALG-FABC(S,U ′,UNFAIRNESS-OBJECTIVE)

6.1 Fair Assignment Under a Bounded Cost

Algorithm block 2 shows the steps of our algorithm ALG-FABC for the FABC objective. In step
(1): we search for the optimal proportional violations given the bound on the clustering cost U using
LPs. Having found the near-optimal solution, in step (2): we round the possibly fractional solution to
a feasible integer solution using a netowk flow algorithm. We note that the details of the search done
in step (1) depend on the objective, i.e., GROUP-UTILITARIAN or GROUP-EGALITARIAN.

Algorithm 2 :ALG-FABC(S,U,UNFAIRNESS-OBJECTIVE)

1: Given the UNFAIRNESS-OBJECTIVE, search for the optimal proportion violation values ∆h at a
cost upper bound of U using the feasibility LPs of (7).

2: Apply network flow rounding to the LP solution with the optimal value.
3: return the set of centers S and the assignment function φ (resulting from the rounded LP

solution).

We note that in fair assignment under a bounded cost FABC the set of centers S has already been
chosen and the optimization is done only over the assignment φ of points to centers. We let xij be a
decision variable that equals 1 if point j is assigned to center i ∈ S and 0 otherwise. Note that the
values of xij are a way to represent the assignment function φ. Regardless of the objective that is
being minimized, the following set of constraints must hold:∑

i,j

dp(i, j)xij ≤ Up (7a)

∀j ∈ C :
∑
i∈S

xij = 1, xij ∈ [0, 1] (7b)

∀h ∈ H : ∆h ∈ [0, 1] (7c)

∀h ∈ H, ∀i ∈ S : (βh −∆h)
(∑
j∈C

xij
)
≤
∑
j∈Ch

xij ≤ (αh + ∆h)
(∑
j∈C

xij
)

(7d)

For the k-center problem, the first constraint (7a) is replaced by ∀j ∈ C : xij = 0 if d(i, j) > U .
Note that in the above we have xij ∈ [0, 1] which is a relaxation of xij ∈ {0, 1}, as the latter would
result in an intractable mixed-integer program. With our variables being xij and ∆h it is reasonable
to consider a convex optimization approach. That is, we could choose to minimize the objective
GROUP-UTILITARIAN or the objective GROUP-EGALITARIAN with our set of constraints being (7).
Looking at the form of the GROUP-UTILITARIAN and the GROUP-EGALITARIAN objectives, it is
not difficult to see that they are linear (and therefore convex) in the parameters xij and ∆h, however
as the following theorem shows, the constraint set (7) is not convex. In fact, either of the proportion
bounds alone in constraint (7d) would lead to a non-convex set. The non-convexity of the constraint
set implies that the resulting optimization problem would also be non-convex:
Theorem 6.3. The constraint set (7) is not convex.
Although the constraint set (7) is not convex, if we fix the values of ∆h then we clearly have a
simple feasibility LP with variables xij . We therefore take an approach where for a given objective
(GROUP-UTILITARIAN or GROUP-EGALITARIAN), we search for the corresponding optimal values
of ∆h by running the feasibility LP of (7). Note that with a given set of values for ∆h, we can
obtain the corresponding value for the GROUP-UTILITARIAN or GROUP-EGALITARIAN objectives
and therefore the LP does not need an objective: a feasibility check suffices. Further, since we
only use non-trivial values for ∆h ∈ [0, 1], constraint (7c) can be omitted. Sections 6.1.1 and 6.1.2
detail how we use the feasibility LPs of (7) to obtain LP solutions that are approximately optimal
(having bounded additive approximation from the optimal) for the GROUP-UTILITARIAN and GROUP-
EGALITARIAN objectives, respectively. Since these resulting LP solutions could contain fractional
values, i.e., it is possible to have a value xij /∈ {0, 1}, the approximately optimal LP solution would
have to be rounded to an integral solution. This rounding further degrades the approximation, but we
show that this degradation is not large and can be bounded. The details of the rounding are shown
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in Section 6.1.3. The search algorithms of Sections 6.1.1 and 6.1.2, followed by the rounding of
Section 6.1.3, lead to an algorithm for FABC.

6.1.1 Search Algorithm for the GROUP-UTILITARIAN Objective

We are searching for the optimal proportional violations ∆∗h ∈ [0, 1] for the GROUP-UTILITARIAN
objective. The first step we take is to discretize the space by a parameter ε ∈ (0, 1). For convenience,
we set ε = 1

r where r ∈ Z+, i.e., r is a positive integer. Accordingly, instead of interacting
with the continuous interval [0, 1] for the proportional violations, we instead interact with Eε =
{ε, 2ε, . . . , . . . , ( 1

ε − 1)ε, 1}, with |Eε | = 1
ε . Therefore, we have a set of ( 1

ε )|H | many possibilities
for the proportional violations and we can obtain the optimal solution for the GROUP-UTILITARIAN
objective through exhaustive search by checking the feasibility of LP (7) and picking the feasible
combination of proportional violations which leads to the smallest value for the GROUP-UTILITARIAN
objective, i.e., GROUP-UTILITARIAN =

∑
h∈H∆h.

The above approach would take O(( 1
ε )|H |) many LP runs. Therefore, we show a faster search that

tries instead O(( 1
ε )|H |−1). The key to this speed up comes from the fact that for the two-color case,

we only need to evaluate O( 1
ε ) many possibilities.

Theorem 6.4. For FABC with GROUP-UTILITARIAN objective, we can use O
((

1
ε

)|H |−1)
–many

LP runs to obtain an LP solution with additive approximation |H |ε.
Furthermore, for the important two-color case with symmetric upper and lower bounds we show a
search algorithm that requires only O

(
log 1

ε

)
LP runs. The two color case with symmetric upper

and lower bounds is that where the two colors h1 and h2 are present with proportions r1 and r2 in
the dataset, and the proportion bounds are set to αi = ri + λi, βi = ri − λi for i ∈ {1, 2} and some
valid λ1, λ2 ∈ [0, 1]. The key observation for the two-color symmetric case is that the proportion of
one color implies the proportion of the other; hence, we can run binary search over the set Eε.
Theorem 6.5. For FABC with two colors, symmetric lower & upper bounds, and the GROUP-
UTILITARIAN objective, we can use O

(
log( 1

ε )
)

–many LP runs to get a solution with an additive

approximation of |H |ε = 2ε.

6.1.2 Search Algorithm for GROUP-EGALITARIAN and GROUP-LEXIMIN Objectives

For the GROUP-EGALITARIAN objective we follow the same discretization step as for the GROUP-
UTILITARIAN objective. For all colors, their violation ∆h is set to the same value and the optimal
solution is found simply by doing binary search over the set Eε by running the feasibility LP (7).
Theorem 6.6. For FABC with the GROUP-EGALITARIAN objective, we can use O

(
log
(

1
ε

))
–

many LP runs to get a solution with an additive approximation of ε.

We provide a heuristic algorithm for the GROUP-LEXIMIN objective; a rough sketch follows. In the
first step, it obtains the GROUP-EGALITARIAN solution. Then, it proceeds by finding a color that
cannot improve beyond the current optimal violation; if more than one color is found, then one of
these colors is randomly picked. The algorithm then looks for the optimal violation for the remaining
colors, having the violations of the previous colors fixed. These steps are followed until no color can
have its proportional violation improved. See Appendix B for the full details.

6.1.3 The Rounding Scheme and ALG-FABC Guarantees

Having obtained the optimal LP solutions for either the GROUP-UTILITARIAN or GROUP-
EGALITARIAN objectives, we now round the solutions to integral values at a bounded increase
to the additive approximation. To do the rounding, we apply the network flow method of [11] (see Ap-
pendix E for details), although other rounding methods are applicable. Given the LP solution xij
and its associated proportional violations ∆h, if we denote the rounded integral solution by x̄ij and
∆̄h, then network-flow rounding guarantees the following: (i)

∑
i,j d

p(i, j)x̄ij ≤
∑
i,j d

p(i, j)xij .

(ii) ∀i ∈ [k] :
⌊∑

j∈C xij

⌋
≤
∑
j∈C x̄ij ≤

⌈∑
j∈C xij

⌉
. (iii) ∀h ∈ H,∀i ∈ [k] :

⌊∑
j∈Ch xij

⌋
≤∑

j∈Ch x̄ij ≤
⌈∑

j∈Ch xij

⌉
.
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Property (i) ensures that the clustering objective will not increase beyond the LP value, and thus,
provided the LP cost does not exceed the upper bound on the cost U , the cost of the rounded
assignment will not exceed U as well. Property (ii) guarantees that the total number of points
assigned to a cluster will not vary by more than 1 point. Property (iii) guarantees that the total number
of points of a given color assigned to a cluster will not vary by more than 1 point. We can use the
above properties along with with the lower bound on the size of any cluster L(U) to establish the
following theorem:
Theorem 6.7. For the FABC problem, the rounded solution has cost of at most U and an additive
approximation of: (1) |H |(ε+ 2

L(U) ) for the GROUP-UTILITARIAN objective and (2) ε+ 2
L(U) for

the GROUP-EGALITARIAN objective.

Recalling the additive approximation lower bounds of Theorem 5.3 for the FABC problem, we see
that we obtain a solution for FABC of cost at most U with near-optimal additive approximation.
Specifically, our additive approximations for the GROUP-UTILITARIAN and GROUP-EGALITARIAN

are 2|H |
L(U) and 2

L(U) compared to their lower bounds of |H |
8L(U) and 1

8L(U) , respectively.

A randomized extension. We also briefly mention a randomized rounding algorithm’s guarantees;
the description of this algorithm (which is motivated by an approach of [35]) is detailed in Appendix
??. This algorithm efficiently constructs a random vector X̄ with entries X̄i,j in {0, 1} such that:
(a) Properties (ii) and (iii) hold with probability 1, and (b) the expected value E[X̄i,j ] equals xi,j
for all (i, j). This has three consequences: (b1) the fairness guarantee for each cluster and color
become better in expectation: for all h ∈ H and for all i ∈ S: E[

∑
j∈Ch X̄ij ] indeed lies between

(βh − ∆h)
(∑

j∈C xij

)
and (αh + ∆h)

(∑
j∈C xij

)
. (b2) The expected value of the objective

function (the left-hand side in (i)) is at most the right-hand side of (i). (b3) Even if we had multiple
linear objective functions, they will all be preserved in expectation.

7 Fairness Across the Clusters is not Possible
It is tempting to modify both the GROUP-UTILITARIAN and GROUP-EGALITARIAN (or GROUP-
LEXIMIN) objectives to sum across the clusters instead of taking the maximum violation
across the clusters. More specifically, we can replace the objectives by the following:
GROUP-UTILITARIAN-SUM, which equals

∑
h∈H,i∈[k]

∆i
h, and GROUP-EGALITARIAN-SUM, which

equals min max
h∈H

∑
i∈[k]

∆i
h, where ∆i

h is the violation of color h in cluster i; clearly the previously-

considered violation ∆h is max
i∈[k]

∆i
h. It can be seen that such an objective is more flexible. For

example, the maximum violations might occur in a cluster that cannot be improved within the given
bound on the clustering cost, while it may be possible to improve it for other clusters. The original
GROUP-UTILITARIAN and GROUP-EGALITARIAN objectives may bring no improvement in such a
situation but their above modifications could. We prove a negative result. Specifically, while we were
able to approximate FABC by small additive values for the original objectives (Theorem 6.7), for the
new objectives we cannot efficiently approximate the FABC problems within even relatively-large
additive approximations:
Theorem 7.1. For FABC, the objectives GROUP-UTILITARIAN-SUM and GROUP-EGALITARIAN-
SUM that sum across the clusters cannot be approximated in polynomial time to within an additive
approximation of O(nδ) where δ is a constant in [0, 1), unless P = NP .

8 Solving the Problem Optimally for a Large-Enough Cost
It seems reasonable to assume that when the upper bound on the cost U is large enough, the problem
becomes solvable in polynomial time. It is not difficult to devise such guarantees for some special
cases. However, in the theorem below we show that an algorithm with such a guarantee would
imply a true approximation3 for fair clustering. Since fair clustering has remained resistant to a true
polynomial-time approximation for general metric spaces and arbitrary lower- and upper- proportion
bounds [13, 8], this suggests that the problem is indeed nontrivial. Furthermore, we also show the
converse, i.e., a true approximation algorithm for fair clustering would imply an exact algorithm for
fair clustering under a bounded cost FCBC.

3A true approximation algorithm yields a solution that approximates the optimal objective value with no
constraint violation, in contrast to bi-criteria algorithms which have a bounded violation in the constraints.

8



Theorem 8.1. Suppose that there is a polynomial time algorithm which can obtain the optimal
solution for FCBC for the upper bound of U if U ≥ α(I) OPTcb(I) where I is a specific instance
of FCBC and OPTcb(I) is the optimal cost of its color-blind clustering. Then we have a true
polynomial time approximation algorithm for fair clustering. Further, a true polynomial time
α′(I)-approximation algorithm for fair clustering implies that FCBC can be solved optimally in
polynomial time for U ≥ α′(I) OPTFC(I).
9 Experiments
We validate our algorithms on datasets from the UCI repository [24]. The results here are for k-means
clustering; additional experiments are in Appendix F.

Hardware, Software, and Algorithms: We only use commodity hardware for all experiments with
our programs running on Python 3.6. For the color-blind k-means clustering, we use the k-means++
algorithm [5] which has an approximation ratio of O(log k). Our LPs are solved using CPLEX [32].
Scikit-learn [46] is called for subroutines such as k-means++. The network-flow rounding is
handled using NetworkX [25].

Datasets: We use all 32,561 entries of the Adult dataset [34]. For the Census1990 dataset [41],
because of its large size (over 2 million points) we sub-sample the dataset to a range similar to that
considered in the fair clustering literature [20, 10]; specifically we use 20,000 data points. We also
use the CreditCard dataset [47] which has 30,000 points (results are in Appendix F). For all datasets
we use the numeric attributes to assign the coordinates in the space and the distance between any two
points is set to the Euclidean distance.
Setting and Measurements: Each color h ∈ H has proportion rh, i.e., rh = | Ch |

| C | . We set the upper
and lower bounds for each color to αh = (1 + δ)rh and βh = (1− δ)rh. This means that each cluster
should have each color with the same proportion as in the population with a possible deviation of δ.

We first do color-blind clustering using the k-means++ algorithm. The clustering cost we obtain
from the k-means++ is a proxy of the lowest possible value of the clustering cost (since the hardness
of clustering forbids the calculation of the true optimal value). We gradually increase the upper bound
cost from the color-blind cost to higher values and for each choice of the upper bound, we minimize
either the GROUP-UTILITARIAN or GROUP-LEXIMIN objectives using our algorithms and record the
objective value. For better interpretation, instead of showing the value of the upper bound, we show
its ratio to the color-blind clustering, which is the PoF. Further, for all experiments we discretize the
space by ε = 1

27 < 0.008.

9.1 GROUP-UTILITARIAN Experiments

We use the Adult and Census1990 datasets with self-reported gender (male or female) as the attribute.
We note that both datasets explicitly use categorical labels for this socially-complex concept, and
acknowledge that this is reductive [17]. Figure 2 shows the PoF versus the achieved GROUP-
UTILITARIAN objective, with δ = 0.1. As expected, as the price of fairness increases (higher
bound on the cost), we can further minimize the proportional violations. Eventually the GROUP-
UTILITARIAN objective becomes less than 0.1 and even very close to zero. We also observe that at a
given cost upper bound, we can achieve lower values for the GROUP-UTILITARIAN objective when
the number of clusters (k) is lower.

Figure 2: PoF vs the GROUP-UTILITARIAN objective for the Adult and Census1990 datasets.

9



9.2 GROUP-EGALITARIAN and GROUP-LEXIMIN Experiments

We again use the Adult and Census1990 datasets. However, for Adult, we set the fairness attribute
to race which—in this dataset, and with the same inherent social caveats as the categorization of
gender—has 5 groups (colors). For Census1990, we set the fairness attribute to age where we have
three age groups.4 We set δ = 0.05 and k = 10 for Adult and δ = 0.1 and k = 5 for Census1990.
Figure 3 shows the results of our algorithm. We notice that for some colors smaller violations are
harder to achieve and we need to set the maximum allowable clustering cost to larger values to reduce
their violations.

Figure 3: PoF versus the proportional violation for different groups (each colored graph is a group) in the Adult
and Census1990 datasets.

9.3 Checking the Size of the Smallest Cluster
As mentioned in Section 5 and Theorem 6.1 our approximations are dependent on the size of the
smallest cluster in the solution. While it is not tractable to obtain the value of L(U) for a given
U , we can still empirically check the size of the smallest cluster in the cost bounded clusterings
we obtain. We note that, throughout, we do not impose any lower bound on the cluster size in our
algorithm. For the above experiments we considered, we find that the minimum cluster size (across
all choices of k) are as follows: Adult (159 points), Census1990 (171 points). The fact that the size
of the smallest cluster is large means that we are achieving small (accurate) additive approximations
with near-optimal objective values and when we obtain a large objective value it is because of how
stringent the cost upper bound is.
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A Omitted Proofs

In this section, we provide proofs for theorems and lemmas in the main paper. We recall Theorem 5.1:

Theorem 5.1. The fair clustering FC (1) and fair assignment FA (2) problems are NP-hard.

Proof. Since fair clustering problems, i.e. fair k-(center, median, or means) generalize their NP-hard
classical counterparts, i.e. the k-(center, median, or means) clustering, it follows that fair clustering
problems are also NP-hard.

The hardness of the fair assignment problem was established by [11] for k-center clustering. Here we
show that fair assignment is NP-hard for k-median and k-means clustering as well.

First, following Section 4 of [11], the reduction is from the Exact Cover by 3-Sets (X3C). In Exact
Cover by 3-Sets, we have a universal set of elements U with |U| = 3r where r is a positive integer
and a set F whose elements are subsets of U . The problem is to decide if there exists a set F ′ such
that F ′ ⊆ F and each element in U is included exactly once in one set in F ′.
The reduction is done by creating the following graph (see Figure 4 for an example). In the lowest
level we have the elements e of the set U each represented with a blue vertex. In the higher level we
have the sets in F each represented with a blue vertex. We draw edges between vertices in e ∈ U
and vertices in F ∈ F if and only if the element e ∈ F . For set F in F we add 3 auxiliary blue
vertices which are connected to it through an edge. Finally, we add a set T of red vertices where
|T | = |U|

3 = r in the highest level where each of those vertices is connected through an edge to every
vertex in the set F .

The distance function puts a cost of zero if the distance is between identical vertices and a cost of one
between vertices connected through an edge. For vertices with no edges between them, the distance
is the minimum distance found according to this graph by calculating the minimum cost path. This
means that the distance between the blue auxiliary vertices and a center which is not their parent
center is 3 (the path from the vertex to the associated center to an element in T , then the specified
center).

In fair assignment, the set of centers is already chosen. We choose the set of centers to be the elements
of F . Therefore, the number of centers k = r. Further, it is clear that this is a two color problem, we
set the lower and upper bounds for the red color to βred = αred = 1

4 . It follows that βblue = αblue = 3
4 ,

i.e. the ratio of red to blue vertices is 1 : 3.

Figure 4: Figure follows the example of [11]. We show the fair assignment resulting graph, from the given Exact
Cover by 3-Sets example where we have U = {a, b, c, d, e, f} and F = {A = {a, b, c}, B = {b, c, d}, C =
{d, e, f}}.

We note the following lemma:

Lemma A.1. Given the constructed graph with the set of centers being F , the minimum clustering
cost is lower bounded by 1 for the k-center problem and n− k for the k-median and k-means.

Proof. First we note the following fact:
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Fact A.1. ∀u, v ∈ G where u and v are distinct, we have that d(u, u) = d(v, v) = 0 and d(u, v) ≥ 1
if u 6= v.

k-center: Since the number of points is greater than the number of centers it follows that there
exists a point u which will be assigned to another vertex v and therefore d(u, v) ≥ 1.

k-median and k-means: Denoting the assignment function (assigning vertices to centers) by φ,
the set of centers by S, and the integer p where p = 1 for the k-median and p = 2 for the k-means,
we have that: ∑

v∈G
dp(v, φ(v)) =

∑
v∈S

dp(v, φ(v)) +
∑

v∈G−S
dp(v, φ(v))

≥ 0 +
∑

v∈G−S
dp(v, φ(v))

≥ 0 +
∑

v∈G−S
1p

≥
∑

v∈G−S
1

= n− k

where the above follows from Fact A.1.

Therefore, we have:

Lemma A.2. If there exists an exact cover, then the fair assignment problem can have a 1 : 3 red to
blue vertex ratio and at a cost of 1 for the k-center and a cost of n− k for the k-median and k-means.

Proof. We translate the exact cover by 3-sets solution to the constructed graph. Each chosen set in
exact cover F ′ will have the 3 corresponding elements from U assigned to its center, along with its 3
auxiliary vertices and 1 vertex from T . If the set was not chosen in the exact cover, then it will have
only its 3 auxiliary vertices assigned to it.

This clearly matches the lower bound on the cost function from lemma (A.1) for each clustering
objective. Further, it is also clear that the 1 : 3 red to blue color ratio is preserved in each cluster.

Lemma A.3. If there exists a fair assignment solution with 1 : 3 red to blue proportion and whose
cost is 1 for the k-center and (n− k) for the k-median and k-means, there exists a solution to the
exact cover by 3-sets problem.

Proof. The costs of 1 and (n − k) for the k-center and k-median/mean respectively can only be
achieved by assigning elements e ∈ U to a center that they have an edge between. Similarly, all of
the blue auxiliary vertices have to be assigned to their parent. Further to achieve the 1 : 3 red to blue
ratio, a center will either choose 3 elements from U and therefore has to choose an element from T to
satisfy the proportion. Or a center will not choose any element from U and in that case it would not
need to pick an element from T to satisfy the proportion.

Here, we recall Theorem 5.2:

Theorem 5.2. Fair clustering under a bounded cost FCBC and fair assignment under a bounded
cost FABC are NP-hard.

Proof. The hardness of fair clustering under a bounded cost FCBC simply follows by setting the
upper bound to U = OPTFC where OPTFC is the optimal value of fair clustering FC. An optimal
solution to fair clustering would achieve the optimal value of 0 for all possible fairness objectives of
FCBC and would have a cost OPTFC ≤ U .
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Conversely, an optimal solution for FCBC would have a proportional violation of zero for all colors
(therefore it is fair). Moreover, its cost would not exceed U = OPTFC. Therefore, it is an optimal
solution for fair clustering.

By the above, a solution is optimal for a fair clustering if and only if it is an optimal solution to the
corresponding FCBC instance with U = OPTFC. It follows that since fair clustering is NP-hard
from theorem (5.1), that fair clustering under a bounded cost FCBC is also NP-hard.

In a similar manner, by setting U = OPTFA the hardness of fair assignment under a bounded cost
FABC can be established from the hardness of fair assignment.

Here, we recall Theorem 5.3:

Theorem 5.3. For a given instance of the FCBC or FABC problem with an arbitrary upper bound
U , unless P = NP no polynomial time algorithm can produce a solution with a cost not exceeding
U that satisfies any of the following conditions: (a) The proportional violation of any color h ∈ H is
∆h <

1
8L(U) . (b) The additive approximation for the GROUP-UTILITARIAN objective is less than

|H |
8L(U) . (c) The additive approximation for the GROUP-EGALITARIAN objective is less than 1

8L(U) .

Proof. We note that our derivation uses the reduction from X3C shown in the proof of theorem (5.1)
and the resulting graph shown in figure (4). We start by deriving a collection of useful lemmas:

Lemma A.4. If U = 1 for the k-center objective or U = n − k for the k-median and k-means
objectives, then L(U) = 4 for all objectives. Further the only set of centers that can lead to a cost
not exceeding U is S = F .

Proof. First it is clear that if we choose the set F to be the centers, i.e. S = F , then if we route
each point to one of its closest centers in F , then we can have for the k-center we would have a
cost of 1 since every point in the graph is at most a distance 1 from a point in F . Further, for the
k-median and k-means objectives, the points F would be routed to themselves and every other point
would be routed to one of its closest centers in F which is at a distance of 1, this leads to a cost of
(0)k + (1)(n− k) = n− k, therefore choosing the F as the set of centers we can indeed satisfy the
upper bound U for all objectives.

Now, consider another set of centers S′ such that ∃i ∈ S′ and i /∈ F , i.e. we have at least one center
not from F . Let f be the point in F not selected in S′. For the k-center objective with U = 1, it
follows that the blue auxiliary points of f have to be made as centers since every other point is at
least a distance of 2 away from them, but each auxiliary point of f is made a center, then it follows
that |S′ −F| ≥ 3, i.e. at least two more points of F have not be selected as centers. We can invoke
the argument again on the new auxiliary points to conclude that |S′−F| ≥ 9. Invoking the argument
again, we will see get that |S′ −F| ≥ 3k which is infeasible since |S′ −F| ≤ |S′| ≤ k. Therefore,
for the k-center with U = 1, we must have S = F . Now having proven that S = F and since U = 1,
it follows that the smallest cluster size is 4 formed by mapping the center in S = F to itself along
with its auxiliary points, i.e. L(U) = 4 for the k-center.

For the k-median and k-means objectives with U = n−k, similiar to the k-center it is clear that every
point which has not been selected as a center must have a center at a distance of at most 1 away. If we
exclude one point f ∈ F from the set of centers, then its auxiliary points will each have to become
centers to satisfy the upper bound cost of U = n− k, but this would mean that there are at least 2
more points in F that have been excluded. Following an argument similar to that of the k-center, we
will have that the set of required centers would be at least 3k which is a contradiction. Therefore,
the only possible choice of centers is S = F . It follows as well that the smallest cluster size if 4
formed by mapping the center in S = F to itself along with its auxiliary points, i.e. L(U) = 4 for
the k-median and k-means objectives.

Further, we define ∆i
red and ∆i

blue as the red and blue violations in the ith cluster, respectively. Then
we have the following lemma

Lemma A.5. For the two color case of the above reduction, ∆i
red = ∆i

blue and ∆red = ∆blue.
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Proof. for cluster i, consider the red and blue violations ∆i
red,∆

i
blue at that cluster, then we have:

∆i
red = |pired −

1

3
| = |(1− piblue)− (1− 2

3
)| = |2

3
− piblue| = ∆i

blue

It is clear then that ∆red = max
i∈[k]

∆i
red = max

i∈[k]
∆i

blue = ∆blue

The following lemma follows immediately from the above:

Lemma A.6. For the two color case of the above reduction GROUP-UTILITARIAN =
2GROUP-EGALITARIAN.

Proof. GROUP-UTILITARIAN = ∆red + ∆blue = 2∆red = 2GROUP-EGALITARIAN.

We also note the following lemma:

Lemma A.7. For a given cluster i with set of points Ci, if the set of red points in the cluster Cred
i

satisfy ∆i
red = | |C

red
i |
|Ci| −

1
4 | <

1
4|Ci| , then cluster i has no violation.

Proof. Suppose that | |C
red
i |
|Ci| −

1
4 | <

1
4|Ci| , then it follows that ||C red

i | − 1
4 |Ci|| <

1
4 . Since |Ci| is

an integer it follows that 1
4 |Ci| is of the form m,m + 1

4 ,m + 1
2 , or m + 3

4 where m is an integer.
Further since |C red

i | is also an integer, the fact that ||C red
i | − 1

4 |Ci|| <
1
4 implies that |C red

i | = 1
4 |Ci|

and we have no violation for the red color in cluster i. Further, from Lemma A.5 the blue violation
equals the red violation and therefore we have no violation in cluster i.

Now we are ready to prove the main claims for the FCBC problem.

For the first claim, assume by contradiction that a polynomial time algorithm gave a solution of
violation less than 1

8L and cost≤ U . Now, if we consider clusters i of size |Ci| such that 4 ≤ |Ci| ≤ 8,
then it clear that since ∆i

red ≤ ∆red ≤ 1
8L(U) , ∆i

red ≤ 1
4|Ci| because |Ci| ≤ 8 ≤ 2L(U), therefore

there is no violation in these clusters by Lemma A.7.

Now consider a cluster of size greater than 8, (note by Lemma A.4 that S = F ) because of the upper
bound U such clusters could only add points for the top row set T to the cluster which are all red,
it clear that the more red points are added the greater the violation, if one additional red point is
added, then for the best color proportions the cluster has a total of: 6 blues and 3 reds, which lead
to a violation of | 13 −

1
4 | =

1
12 >

1
8L(U) = 1

32 , therefore it is impossible for the algorithm to form
such clusters as that would contradict the assumption that the algorithm obtains a violation < 1

8L(U)

for each color. Therefore such clusters are not possible. This means that there is no violation in
any cluster and that the problem has been solved optimally which by the NP-hardness is impossible
unless P = NP .

Now the two remaining claims follow easily. By definition we have that GROUP-EGALITARIAN =
max
h∈H

∆h. If GROUP-EGALITARIAN < 1
8L(U) , then it follows that ∆h < 1

8L(U) for every color

h ∈ H which by the first claim cannot happen unless P = NP .

Further, by Lemma A.6 GROUP-UTILITARIAN = 2 GROUP-EGALITARIAN, therefore if
GROUP-UTILITARIAN < |H |

8L(U) , then GROUP-EGALITARIAN < 1
8L . which is impossible unless

P = NP .

The same claims for the FABC problem can be proven by simply setting the set of centers S = F
and the upper bound U = 1 for k-center and n− k for the k-median/means, then following similar
arguments.
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Note: In the proof above, if we consider only the upper bound cost U and ignore the fairness
objective the problem is solvable in polynomial time. For FCBC simply set S = F , then route
each point to one of its closest centers. For the FABC with a given S = F , again simply route each
points to one of its closest centers. This highlights that the hardness is not from the upper bound cost
U .

Next, we recall Theorem 6.2
Theorem 6.2. For any clustering objective and both the GROUP-UTILITARIAN and GROUP-
EGALITARIAN objectives, given an algorithm that solves fair assignment under a bounded cost
FABC with additive approximation µ, the fair clustering under a bounded cost FCBC problem
can be solved with an additive approximation of µ and at a cost of at most (2 + α)U , where α is the
approximation ratio of the color-blind clustering algorithm.

Proof. Let S and φ be the set of centers and assignment of the color-blind algorithm. Let S∗ and
φ∗ be the optimal set of centers and assignment for the fair assignment under bounded cost FABC.
Let φ′ be an assignment that routes the vertices from their center in S∗ to the nearest center in S, i.e.
for a given vertex j, φ′(j) = argmini′∈S d(i′, φ∗(j)). Based on this setting we can upper bound the
objective based on the following:

d(j, φ′(j)) ≤ d(j, φ∗(j)) + d(φ′(j), φ∗(j))

≤ d(j, φ∗(j)) + d(φ(i), φ∗(j))

≤ d(j, φ∗(j)) + d(j, φ∗(j)) + d(j, φ(j))

≤ 2d(j, φ∗(j)) + d(j, φ(j))

It follows then by the triangle inequality of the p-norm and the non-negativity of the compo-

nents, that
(∑

j∈C d
p(j, φ′(j))

)1/p
≤ 2

(∑
j∈C d

p(j, φ∗(j))
)1/p

+
(∑

j∈C d
p(j, φ(j))

)1/p
≤

2U +αU = (2 + α)U . Note that in the last inequality the bounded the color-blind cost as follows:(∑
j∈C d

p(j, φ(j))
)1/p

≤ αOPTcb ≤ αU , where as noted the optimal color-blind cost OPTcb is
upper bounded by U , i.e. OPTcb ≤ U otherwise the problem would not be feasible. This proves the
upper bound on the objective.

Now we establish guarantees on the proportions. For a given center s in S, let N(s) = {i′ ∈ S∗|s =
argmini∈S d(i, i′)}, i.e. N(s) is the set of centers in S∗ routing their vertices to s. Denote the set of
points assigned to cluster i′ by φ∗−1(i′), i.e. φ∗−1(i′) = {j ∈ C |φ∗(j) = i′}. Then for any color h
we have that:

min
i′∈N(s)

(∑
j∈φ∗−1(i′),χ(j)=h 1

)
|φ∗−1(i′)|

≤∑
i′∈N(s)

(∑
j∈φ∗−1(i′),χ(j)=h 1

)∑
i′∈N(s) |φ∗

−1(i′)|
≤

max
i′∈N(s)

(∑
j∈φ∗−1(i′),χ(j)=h 1

)
|φ∗−1(i′)|

That is the final color proportion will be within the lower and upper proportions of the routing
centers. It follows that ∆h does not increase for any color and that the GROUP-UTILITARIAN,
GROUP-EGALITARIAN, and GROUP-LEXIMIN objectives using φ′ are not greater than that of the
optimal solution.

The above facts, combined with the premise of having an algorithm that solves the fair assignment
under bounded cost FABC with an additive violation of µ completes the proof.

Next, we recall Theorem 6.3
Theorem 6.3. The constraint set (7) is not convex.

Proof. The non-convexity of the constraint set (7) can be shown even when ignoring the upper
proportionality constraint, i.e. constraint (7d) only with the lower bound. Specifically, we would have

18



the following constraint set: ∑
i,j

dp(i, j)xij ≤ Up (8a)

∀j ∈ C :
∑
i∈S

xij = 1, xij ∈ [0, 1] (8b)

∀h ∈ H : ∆h ∈ [0, 1] (8c)

∀h ∈ H,∀i ∈ S : (βh −∆h)
(∑
j∈C

xij

)
≤
∑
j∈Ch

xij (8d)

Now, assume that the upper bound on the cost U is sufficiently large (this would let assignments of
a high cost remain feasible). Consider the case of two colors: red and blue, with βred = βblue = 1

2 .
Let each color constitute half the dataset, i.e. | Cred | = | Cblue | = n

2 , clearly | C | = 2| Cred | =

2| Cblue | = n. Set the number of clusters to two (k = 2), consider the following two feasible solutions
x1ij ,∆

1
red,∆

1
blue and x2ij ,∆

2
red,∆

2
blue with ∆1

blue = ∆2
blue = 1, then the following holds (note that

α = 2
3 ):

For x1ij ,∆
1
red:

cluster 1:
∑
j∈Cred

x11j =
∑
j∈Cblue

x11j = α
n

2
=

2

3

n

2
=
n

3

cluster 2:
∑
j∈Cred

x12j =
∑
j∈Cblue

x12j = (1− α)
n

2
=

1

3

n

2
=
n

6

|C2| =
∑
j∈C

x12j =
n

3

∆1
red = 0

For x2ij ,∆
2
red:

cluster 1:
∑
j∈Cred

x21j =
n

2
,

∑
j∈Cblue

x21j = (1− (α+
1

n/2
))
n

2
=
n

6
− 1

cluster 2:
∑
j∈Cred

x22j = 0,

∑
j∈Cblue

x22j = (α+
1

n/2
)
n

2
= (

2

3
+

1

n/2
)
n

2
=
n

3
+ 1

|C2| =
∑
j∈C

x22j =
n

3
+ 1

∆2
red =

1

2

We now form a simple convex combination of the two solutions xij = 1
2 (x1ij + x2ij),∆red =

1
2 (∆1

red + ∆2
red) = 1

4 . Constraints (8a), (8b), and (8c) would clearly be satisfied, but if we consider
constraint (8d) for the red color and the second cluster, then we have:

RHS =
∑
j∈Cred

x2j =
n

12

LHS = (
1

2
− 1

4
)(
n

3
+

1

2
) =

n

12
+

1

8
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It is clear that LHS ≤ RHS does not hold and therefore, the constraint is not satisfied for the convex
combination and therefore the constraint set of the problem is indeed not convex.

A similar assignment of solutions can be used to show that the set is not convex if we were to consider
only the over-representation constraint in (7d) instead.

Next, we recall Theorem 6.4

Theorem 6.4. For FABC with GROUP-UTILITARIAN objective, we can use O
((

1
ε

)|H |−1)
–many

LP runs to obtain an LP solution with additive approximation |H |ε.

Before we give the proof of Theorem 6.4 we introduce some observations and algorithm (3). The
core of the speed up is an algorithm that runs O( 1

ε ) many LPs for the two color case. Therefore given
a general instance of |H | > 2 many colors, we simply explore all O(( 1

ε )|H |−2) possibilities for
|H | − 2 colors and find the optimal value for the two excluded colors through O( 1

ε ) many LP runs
for each possibility, leading to a total of O(( 1

ε )|H |−1).

Algorithm for FABC with two colors and arbitrary proportion bounds: Now we explain our
algorithm for the two color case that runs at most O( 1

ε ) many LPs. The algorithm utilizes two facts:

Fact A.2. If the LP is feasible for ∆1 and ∆2, then it is also feasible for ∆′1 and ∆′2 where it either
holds that ∆′1 ≥ ∆1, ∆′2 ≥ ∆2, or both.

Fact A.3. If the LP is feasible for ∆1 and ∆2, then ∆′1 = ∆1 + i and ∆′2 = ∆2 − i result in the
same value for the GROUP-UTILITARIAN objective.

As mentioned before we discretize the set of possibilities for ∆1 and ∆2 in the range [0, 1] by
ε = 1

r where r is a positive integer. This leads to a set of Eε×Eε many possibilities where
Eε = {ε, 2ε, . . . , . . . , ( 1

ε − 1)ε, 1}. This results in a two dimensional grid with each cell having a
certain value for the GROUP-UTILITARIAN objective as figure 5 shows for a specific value of ε.

The algorithm is shown in block (3). Note that LP (∆1,∆2) is a function that returns true if the LP
is feasible for the proportional violations of ∆1 and ∆2 for colors 1 and 2, respectively and returns
false otherwise. The rough sketch of the algorithm is that it starts at the top right of the grid and
checks for feasibility. It then chooses smaller values of ∆1 until it encounters an infeasible instance.
Once that happens the algorithm moves diagonally, looking for a feasible instance5. Once a feasible
instance is found on the diagonal, the algorithm moves vertically down until it reaches the bottom and
terminates or reaches an infeasible instance and therefore goes back to exploring diagonally again.
See figure 6 for a run of the algorithm.

Lemma A.8. Algorithm (3) runs at most O( 1
ε ) many LPs and finds a solution with additive approxi-

mation 2ε.

Proof. First we start by bounding the total number of LP runs. Since the algorithm in each step either
moves horizontally (at most O( 1

ε ) steps), or diagonally (at most O( 1
ε ) steps), or vertically (at most

O( 1
ε ) steps), the total number of LP runs is indeed O( 1

ε ). We note that the horizontal and vertical
explorations can be done faster through binary search but the diagonal still has to be done through a
linear sweep which makes the asymptotic number of LP runs still O( 1

ε ).

Now we prove that we obtain a values at most 2ε greater than the optimal. Suppose that the optimal
proportional violations are ∆∗1 and ∆∗2, then in the discrete grid we have ∆̄1 and ∆̄2 such that
∆̄1 −∆∗1 ≤ ε and ∆̄2 −∆∗2 ≤ ε which must be feasible, this follows by Fact (A.2). It is therefore
clear that there is a cell in the gird with value at most 2ε more than the optimal. Now we show that the
algorithm either finds it or finds a better solution. If ∆̄2 = 1, then during the horizontal exploration
the algorithm will pass over the (∆̄1, ∆̄2) cell and therefore it will either output ∆̄1 + ∆̄2 as the
optimal value or find a smaller value.

If ∆̄2 < 1, then by Fact (A.2) cell (∆̄1, 1) must be feasible. Since (∆̄1, 1) is feasible, then if
(∆̄1− ε, 1) is infeasible the algorithm will switch to vertical exploration and encounter cell (∆̄1, ∆̄2).

5Note that there is no point to explore above the diagonal as these are cells that lead to higher not lower
values for the GROUP-UTILITARIAN objective
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Algorithm 3 Algorithm for Arbitrary Proportion Two Color Case for the GROUP-UTILITARIAN
Objective

1: Set UTIL∗ = 2, ∆∗1 = 1, ∆∗2 = 1.
2: Set direction = 0. {0 for horizontal, 1 for diagonal, 2 for vertical}
3: while (direction = 1 and ∆1 ≤ 1 and ∆2 ≥ ε) or (direction = 2 and ∆2 ≥ ε) do
4: if direction = 0 then
5: ∆1 = ∆1 − ε
6: if ∆1 = 0 then
7: ∆1 = ∆1 + ε
8: direction = 2
9: else if LP (∆1,∆2) = TRUE then

10: ∆∗1 = ∆1

11: UTIL∗ = ∆1 + ∆2

12: else if LP (∆1,∆2) = FALSE then
13: ∆1 = ∆1 + ε
14: direction = 1 {Explore diagonally}
15: end if
16: else if direction = 1 then
17: ∆1 = ∆1 + ε
18: ∆2 = ∆2 − ε
19: if LP (∆1,∆2) = TRUE then
20: UTIL∗ = ∆1 + ∆2

21: ∆∗1 = ∆1

22: ∆∗2 = ∆2

23: direction = 2 {Explore vertically}
24: end if
25: else if direction = 2 then
26: ∆2 = ∆2 − ε
27: if LP (∆1,∆2) = TRUE then
28: UTIL∗ = ∆1 + ∆2

29: ∆∗2 = ∆2

30: else
31: direction = 1 {Explore diagonally}
32: end if
33: end if
34: end while
35: return ∆∗1, ∆∗2, UTIL∗.

If a cell (∆1, 1) with ∆1 < ∆̄1 is feasible, then the algorithm will continue horizontally exploring,
assuming cell (ε, ε) is not feasible6 then the algorithm eventually switches to diagonal exploration
if this diagonal has cells of GROUP-UTILITARIAN value less than ∆̄1 + ∆̄2, then the algorithm
has an encountered a feasible cell with value less than or equal to ∆̄1 + ∆̄2. If the diagonal has
cells of GROUP-UTILITARIAN value equal to ∆̄1 + ∆̄2, then either the algorithm will encounter the
cell (∆̄1, ∆̄2) or it will encounter another feasible with the same value by Fact A.3. If the diagonal
has cells of GROUP-UTILITARIAN value greater than ∆̄1 + ∆̄2, then we note that we could have a
collection of optimal cells of GROUP-UTILITARIAN value less than or equal to ∆̄1 + ∆̄2 located
below the diagonal, then it should be clear that the algorithm will encounter the optimal cell with
smallest ∆1 value.

Now we proof theorem Theorem 6.4:

Proof of Theorem 6.4. We have |H |many proportional violation values to decide, one for each color.
We do exhaustive search over the proportional violation values in the discrete set Eε for all colors
except for the first two colors h1 and h2. For a given value of proportional violations for the colors in

6If cell (ε, ε) is feasible, then the algorithm will explore horizontally to the last cell, followed by vertical
exploration to the last cell.
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Figure 5: The two dimensional grid formed by discretizing the values of ∆1 and ∆2. Here ε = 1
6

. Note that
each number shown is a multiple of ε, i.e. the first coordinate on the (∆1) axis is 1× ε, then 2× ε and so on.
For each cell we put the GROUP-UTILITARIAN objective value, which is again a multiple of ε, i.e. the top right
cell has a GROUP-UTILITARIAN of 12ε = 12 1

6
= 2. Notice how the cells on the same diagonal have the same

value as stated in Fact (A.3.)

Figure 6: Here we show a possible run of the algorithm over the grid of figure 5. The circled cells are ones
where the LP was run. A green circle indicates that the LP was feasible whereas a red circle indicates that
the LP was infeasible. The blue number indicates the order where the LP corresponding to the cell was run,
accordingly we start at the top right cell. It should be clear that the algorithm starts by horizontal exploration to
the left, that it then moves to diagonal exploration which changes to vertical exploration once a feasible cell
is found. Furthermore, the vertical exploration changes to diagonal once a an infeasible cell is encountered.
It should be clear that the optimal value found by the algorithm is at the cell with ∆1 = ∆2 = 3ε with
GROUP-UTILITARIAN = 6ε.

H−{h1, h2}, we find the optimal values for colors h1 and h2 by running algorithm (3). It follows
by Theorem (A.8), that we would find the optimal value for h1 and h2. Further, since finding the
optimal value for the two colors h1 and h2 takes O( 1

ε ) many LP runs and exhaustive search over
the set of colorsH−{h1, h2} takes O(( 1

ε )|H |−2) LP runs, then the optimal value can be found in at
most O(( 1

ε )|H |−1) LP runs.

Next, we recall Theorem 6.5

Theorem 6.5. For FABC with two colors, symmetric lower & upper bounds, and the GROUP-
UTILITARIAN objective, we can use O

(
log( 1

ε )
)

–many LP runs to get a solution with an additive

approximation of |H |ε = 2ε.
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Before we prove Theorem 6.5 we point out the following definition and observations. For the two
color case, our color set isH = {h1, h2}. Further, we denote the proportions for color i by ri where
ri = |{j|j∈C,χ(j)=i}|

| C | = | Ci |
| C | . We use color h1 to denote the color with less points, i.e. r1 ≤ r2. The

upper and lower bounds we consider for each color are: βi = (1 − δ)ri and αi = (1 + δ)ri. The
idea behind the algorithm is that the proportions of one color imply the proportion of the other color.

Algorithm for FABC with two colors and symmetric lower and upper proportion bounds: Our
algorithm is based on the simple observation shown in figure 7

Figure 7: Proportions and bounds for two colors. r1 = 0.25, r2 = 0.75, λi = δri for i ∈ {1, 2} where δ = 0.1.
Notice how if color 1 violates the upper bound by having p1 = 0.3, then we must have p2 = 0.7, but color 2
is not violating. On the other hand, a violation for color 1 with p′1 = 0.4 implies p′2 = 0.6 which causes a
violation for color 2.

Without loss of generality, let λ1 ≤ λ2, based on the observation in figure 7, we have the following
lemma:

Lemma A.9. If ∆1 < λ2 − λ1, then ∆2 = 0. If ∆1 ≥ λ2 − λ1, then ∆2 = ∆1 − (λ2 − λ1)

Proof. Let color 1 have a ∆1 violating proportion of p1, then in some cluster p1 = α1 + ∆1 or
p1 = β1 −∆1.

Consider the case where p1 = α1 + ∆1, then p2 = 1− p1 = 1− α1 −∆1. Now if ∆1 < λ2 − λ1,
then we have p2 > 1− α1 − (λ2 − λ1) = 1− λ2 + λ1 − α = (1− r1)− λ2 = r2 − λ2 = β2 this
means that color 2 does not violate the lower bound. If we assume that color 2 violates the upper
bound by an amount ∆2 > 0, then this would imply that p1 = 1−p2 and the lower violation for color
1 would be β1 − p1 = β1 − (1− α2 −∆2) = β1 − 1 + α2 + ∆2 = r1 − λ1 + r2 + λ2 + ∆2 − 1 =
1 + (λ2 − λ1) + ∆2 − 1 = (λ2 − λ1) + ∆2 > (λ2 − λ1) which is a contradiction since we assumed
that ∆1 < (λ2 − λ1).

Similarly, if ∆1 ≥ (λ2 − λ1), then we have ∆2 = β2 − (1 − α1 −∆1) = β2 − 1 + α1 + ∆1 =
r2 − λ2 + r1 + λ1 − 1 + ∆1 = λ1 − λ2 + ∆1 = ∆1 − (λ2 − λ1). Now if we assume that color
2 has a violation of the upper bound by an amount ∆′2 > ∆1 − (λ2 − λ1), this would imply that
color 1 violates the lower bound by β1 − p1 = r1 − λ1 + r2 + λ2 − 1 + ∆2 = (λ2 − λ1) + ∆2

which is a contradiction since ∆1 < ∆2 + (λ2 − λ1), therefore color 2 cannot violate by more than
∆1 − (λ2 − λ1).

The case of p1 = β1 −∆1 follows similar arguments.

The above observations lead to the following algorithm:

Algorithm 4 GROUP-UTILITARIAN Algorithm for Two Colors with Symmetric Bounds for the
GROUP-UTILITARIAN Objective

Input: set of points C, price of fairness U , for each color h ∈ H lower and upper proportion values
βh, αh, error parameter ε.
Define the set Eε = {0, ε, . . . , ( 1

ε − 1)ε}
Binary search ∆1 over the set Eε by running the LP (7) ( if ∆1 < δ(r2 − r1) then ∆2 = 0,
otherwise set ∆2 = ∆1 − δ(r2 − r1) ).

Now we are ready to prove Theorem 6.5.

Proof of Theorem 6.5. It follows from Lemma (A.9) that we can do binary search over the set Eε
using ∆1 as done in algorithm (4). Clearly, at most O

(
log( 1

ε )
)

many LPs will be run because of
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binary search. Further, we know that we will find a solution at most ε greater, i.e. we worst case best
LP value is: ∆∗1 + ε,∆∗2 + ε = (∆∗1 + ∆∗2) + 2ε = OPT +2ε.

Next, we recall Theorem 6.6

Theorem 6.6. For FABC with the GROUP-EGALITARIAN objective, we can use O
(

log
(

1
ε

))
–

many LP runs to get a solution with an additive approximation of ε.

Proof. For each color h set ∆h to the same value ∆, do binary search over Eε using LP(8). Clearly,
the final value is at most ε greater than the optimal and we need at mostO(log (1

ε )) many LP runs.

Now we introduce the following lemma:

Lemma A.10. ∆̄h < ∆h + 2
L(U) , i.e. rounding will increase the violation by at most 2

L(U) .

Proof. Based on properties (ii) and (iii) from network flow rounding (see Section 6.1.3), we can get
the following bound for the upper proportion:

∑
j∈Ch

x̄ij ≤


∑
j∈Ch

xij

 (by property (iii))

≤

min
(
(αh + ∆h), 1

)(∑
j∈C

xij

) (problem constraint)

< min
(
(αh + ∆h), 1

)(∑
j∈C

xij

)
+ 1 (ceiling upper bound)

≤ min
(
(αh + ∆h), 1

)(∑
j∈C

x̄ij + 1
)

+ 1 (by property (ii))

≤ min
(
(αh + ∆h), 1

)(∑
j∈C

x̄ij

)
+ min

(
(αh + ∆h), 1

)
+ 1

≤ min
(
(αh + ∆h), 1

)(∑
j∈C

x̄ij

)
+ 2 (since min

(
(αh + ∆h), 1

)
≤ 1)

≤ (αh + ∆h)
(∑
j∈C

x̄ij

)
+ 2

This implies that the new violation for the rounded solution ∆̄h satisfies:

αh + ∆̄h =

∑
j∈Ch x̄ij∑
j∈C x̄ij

< αh + ∆h +
2∑

j∈C x̄ij
≤ αh + ∆h +

2

L(U)

Therefore, we have:

∆̄h−∆h <
2

L(U)
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For the lower proportions, we also have:

∑
j∈Ch

x̄ij ≥

∑
j∈Ch

xij

 (by property (iii))

≥

max
(
(βh −∆h), 0

)(∑
j∈C

xij

) (problem constraint)

> max
(
(βh −∆h), 0

)(∑
j∈C

xij

)
− 1 (ceiling upper bound)

≥ max
(
(βh −∆h), 0

)(∑
j∈C

x̄ij − 1
)
− 1 (by property (ii))

≥ max
(
(βh −∆h), 0

)(∑
j∈C

x̄ij

)
−max

(
(βh −∆h), 0

)
− 1

≥ max
(
(βh −∆h), 0

)(∑
j∈C

x̄ij

)
− 2 (since max

(
(βh −∆h), 0

)
≤ 1)

≥ (βh −∆h)
(∑
j∈C

x̄ij

)
− 2

βh − ∆̄h =

∑
j∈Ch x̄ij∑
j∈C x̄ij

> βh −∆h−
2∑

j∈C x̄ij
≥ βh −∆h−

2

L(U)

Therefore, we have:

∆̄h−∆h <
2

L(U)

Next, we recall Theorem 6.7:
Theorem 6.7. For the FABC problem, the rounded solution has cost of at most U and an additive
approximation of: (1) |H |(ε+ 2

L(U) ) for the GROUP-UTILITARIAN objective and (2) ε+ 2
L(U) for

the GROUP-EGALITARIAN objective.

Proof. (1) For the GROUP-UTILITARIAN, by theorems (6.4) and (6.5) the LP solution has a violation
of |H |+ ε, then by lemma (A.10) and the definition of the GROUP-UTILITARIAN =

∑
h∈H∆h, the

violation is at most |H |(ε+ 2
L(U) ).

(2) For the GROUP-EGALITARIAN, by theorem (6.6) and lemma (A.10), the rounded solution would
have a worst case violation of ε+ 2

L(U) across the colors.

We introduce the following lemma which is important for proving Theorem 7.1:
Lemma A.11. Any polynomial time approximation algorithm for FABC for a general upper bound
U must have µ > 0, i.e. it must have a strictly greater than zero additive approximation guarantee.

Proof. The proof follows from the proof of Theorem (5.2). Specifically, the proof of Theorem (5.2)
shows that hard instances for FABC could have an optimal value of 0 for the GROUP-UTILITARIAN,
GROUP-EGALITARIAN, and GROUP-LEXIMIN objectives, specifically when U = OPTFC where
OPTFC is the optimal value of fair clustering. Therefore, if a polynomial time approximation
algorithm with approximation ratio ρ ≥ 1 and additive approximation µ ≥ 0 is ran over such hard
instances, then it would output a solution of value ρOPT +µ = ρ(0) + µ = µ. If the algorithm has
µ = 0, then it would mean that the problem has been solved optimally which is impossible unless
P = NP . Therefore, µ > 0.
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Now we recall Theorem 7.1:
Theorem 7.1. For FABC, the objectives GROUP-UTILITARIAN-SUM and GROUP-EGALITARIAN-
SUM that sum across the clusters cannot be approximated in polynomial time to within an additive
approximation of O(nδ) where δ is a constant in [0, 1), unless P = NP .

Proof. By the result of Lemma A.11 we know that we can hard instances with OPT = 0 and that any
polynomial time algorithm should have an additive approximation µ > 0. Further, we consider the
same X3C reduction of Theorem 5.2 and Figure 4 for FABC with the centers set to the points of F .

To prove Theorem 7.1, suppose by contradiction that an algorithmA exists that guarantees an additive
approximation of O(nδ) for δ ∈ [0, 1). Suppose, we are given an instance of the problem with
optimal solution value of OPT and n many points. Note by Lemma A.7 if ∆i

red <
1
|Ci| , then there us

no violation. It follows that if
∑
i∈[k](∆

i
red + ∆i

blue) <
1
4n then we havwe no violation.

Now, create D many duplicates of the given set of points. Let the distance between the points
belonging to the same duplicate be the same as in the original instance, whereas for points in different
duplicates the distance is infinity. Further, let the number of centers be Dk where each duplicate has
k many centers assigned at the same points as the original instance. Given the original upper bound
on the clustering objective U , the new upper bound U ′ is set to U ′ = U for the k-center, U ′ = DU
for the k-median, and U ′ =

√
DU for the k-means objectives.

If this modified instance is given to A, then the output would have a value of at most
ρDOPT +c(Dn)δ for some c > 0. If D > 1

4δ−1 c
1

1−δ n
1+δ
1−δ (which is polynomial in n), then

the average violation across the duplicates is:

ρDOPT +c(Dn)δ

D
= ρOPT +cnδDδ−1

< ρOPT +c
1

4
nδc

δ−1
1−δ n

(1+δ)(δ−1)
1−δ = ρOPT +

1

4n
= 0 +

1

4n

This means that there must exist at least one duplicate for which the violation is at most 1
4n which

means that the problem has been exactly in polynomial time which is impossible unless P = NP .

Next, we recall Theorem 8.1:
Theorem 8.1. Suppose that there is a polynomial time algorithm which can obtain the optimal
solution for FCBC for the upper bound of U if U ≥ α(I) OPTcb(I) where I is a specific instance
of FCBC and OPTcb(I) is the optimal cost of its color-blind clustering. Then we have a true
polynomial time approximation algorithm for fair clustering. Further, a true polynomial time
α′(I)-approximation algorithm for fair clustering implies that FCBC can be solved optimally in
polynomial time for U ≥ α′(I) OPTFC(I).

Proof. Suppose α(I) OPTcb(I) ≤ OPTFC(I) where OPTFC is the optimal fair clustering cost,
then fair clustering is solvable in polynomial time which is impossible unless P = NP since fair
clustering is NP-hard.

If α(I) OPTcb(I) > OPTFC(I). Then this algorithm will not have any fairness violation if we
choose U = α(I) OPTcb(I), further its cost is α(I) OPTcb(I) ≤ α(I) OPTFC(I). Therefore,
we have a true polynomial time approximation algorithm for fair clustering with approximation ratio
at most α(I).

Now we prove the second part. By definition the output of a true approximation for fair clustering
would have no proportional violations therefore achieving the optimal value for any objective for
FCBC. Therefore, we have an optimal algorithm for FCBC for U ≥ α′(I) OPTFC(I) ≥
α′(I) OPTcb(I).

Further, a true approximation algorithm for fair clustering algorithm would imply an exact algorithm
for fair clustering under a bounded cost FCBC.
Theorem A.1. A true polynomial time α(I) approximation algorithm for fair clustering implies
that fair clustering under a bounded cost FCBC can be solved optimally in polynomial time for
U ≥ α(I) OPTFC(I).
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Proof. Since we have a true approximation, then there would be no fairness violation (optimal value).
Further, this would be U such that U ≥ α(I) OPTFC(I) ≥ α(I) OPT(I).

B Solution for the GROUP-LEXIMIN Case

Here we present the full details for the GROUP-LEXIMIN case, see algorithm (5) below.

Algorithm 5 Leximin Algorithm

Input: set of points C, price of fairness U , for each color h ∈ H lower and upper proportion values
βh, αh
Hfixed = {},∆min = 0
whileHfixed 6= H do

Step 0: For each color h ∈ Hfixed set its violation to its minimum found in the previous
iterations ∆min

h .
Step 1: For each color h ∈ H−Hfixed , set ∆h = ∆.
Find the the minimum ∆, such that ∆ < ∆q−1

min that satisfies LP (7) using binary search over Eε,
let ∆q

min = ∆ + 2
L .

Step 2: For the set h′` ∈ H−Hfixed, find the minimum set of colors with violation ∆q
min and

add them toHfixed using LP (9).
Step 3: If in Step 2 no color is found, then randomly pick a color fromH−Hfixed and add it
toHfixed.

end while

LP (9) below is run once for each h′` ∈ H−Hfixed (note lines 9c and 9e). The LP does not have an
objective and amounts to a feasibility check.∑

i,j

dp(i, j)xij ≤ Up (9a)

∀j ∈ C :
∑
i∈S

xij = 1, xij ∈ [0, 1] (9b)

(9c)

for the given h′
`:(

βh −
[
∆q

min −
2

L
− ε
])(∑

j∈C

xij
)
≤

∑
j∈C,

χ(j)=h′h

xij ≤

(
αh +

[
∆q

min −
2

L
− ε
])(∑

j∈C

xij
)

(9d)

∀h ∈ H−
(
Hfixed ∪{h′

`}
)
, ∀i ∈ {1, . . . , k} : (9e)

(βh −∆q
min)

(∑
j∈C

xij
)
≤

∑
j∈C,
χ(j)=h

xij ≤ (αh + ∆q
min)

(∑
j∈C

xij
)

(9f)

∀h ∈ Hfixed : (βh −∆min
h )

(∑
j∈C

xij
)
≤

∑
j∈C,
χ(j)=h

xij ≤ (αh + ∆min
h )

(∑
j∈C

xij
)

(9g)

In algorithm (5), step 1 does a binary search over the set Eε to find the minimum feasible violation
∆q

min for the active set of colors (in the setH−Hfixed). Step 2 finds the set of colors whose violation
can be improved beyond ∆q

min, by running an LP (see B) specific to each color in H−Hfixed. If
all colors in H−Hfixed can improve, then in step 3 a random color is picked from that a set. Step
0 simply sets the violation to the optimal found value for the set of colors that can no longer be
improved (the setHfixed).
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C Discussion on the Size of the Smallest Cluster for a Given Cost Upper
Bound

As discussed, it is clear from Theorem 6.1 that the larger the size of the smallest cluster, the better
our approximation. In Section C.1 we consider examples where in the absence of outliers and for
suitable values of k, we would not have small clusters. We note further that whereas the given cost is
U the final approximation in Theorem 6.1 is in terms of 1

L(U ′) where U ′ = (2 + α)U with α being
the color-blind approximation ratio. So it is reasonable to wonder about the gap between L(U) from
the lower bound of Theorem 5.3 and L(U ′) from Theorem 6.1. We show that the gap is example
dependent, specifically in Section C.2 we show that the gap can be arbitrarily large and in Section
C.3 we show that it’s possible that they are precisely equal, i.e. L(U) = L(U ′). We note here that
color assignments have no significance.

C.1 For suitable k with no outliers L(U) is large

For reasonable values of k and in the absence of outliers, provided the upper clustering cost U is not
very large, we do not expect clusters of a small size, i.e. L(U) is large. In Figure 8 we choose a value
of k that recovers the underlying clustering. We can see that there are no small clusters. On the other
had, in Figure 9 because of outliers we end up with small clusters. Moreover, if we choose a value of
k greater than 3, then we notice of the clusters fragment as in Figure 10, this leads to smaller clusters
but even then they are not pathologically small.

Figure 8: Here there are no outliers and we choose k = 3 which recovers the clusters of the dataset.

Figure 9: Here we have a cluster of two points because of the outlier points.

C.2 Example where the gap between L(U) and L(U ′) is large

See Figure 11 which is the same as that of Figure 5.1. Note that by Lemma A.4, for the k-center if
U = 1, then L(U) = 4. But at U ′ = (2 + α)U = 4, we can get L(U ′) = 1. This is not difficult
to see since if we select any point from the top row T , then every other point in the graph is at a
distance of at most 2.
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Figure 10: Here we increase k to k = 4.

Figure 11

C.3 Example where L(U ′) = L(U)

See Figure 12 with k = 3 and the distance between the clusters R is sufficiently large, the size of the
smallest cluster does not decrease with increasing cost for reasonable values of U ′. For the k-center,
we can simply have R > (α+ 2)r where r is the radius of any cluster.

Figure 12: L(U) is

D Tradeoff between the Upper and Fairness

It is worth asking if we can obtain a clear tradeoff between the upper clustering cost and the achievable
fairness (whether using the GROUP-EGALITARIAN or GROUP-UTILITARIAN objectives). In the
two sections bellow, we show that in general this is not achievable. In some examples, the tradeoff
is effectively a step function whereas in others it gradually increases. Throughout, we consider
two clustering (k = 2) with the k-center objective and set αred = αblue = βred = βblue = 1

2 . By
the above proportions, it is not difficult to see that ∆red = ∆blue and that GROUP-UTILITARIAN =
2GROUP-EGALITARIAN, simply following the proofs of Lemma A.5 and Lemma A.6, respec-
tively. Since GROUP-UTILITARIAN = 2GROUP-EGALITARIAN, we will only discuss the GROUP-
EGALITARIAN objective for simplicity. Further, it follows as well that ∆red,∆blue ≤ 1

2 and that any
non-trivial color-proportional clustering should have ∆red,∆blue <

1
2 .

D.1 Example where the tradeoff is a step function

In the following examples (a) and (b) shown in Figure 13 the tradeoff follows a step function. Letting
r be the distance between the nearby same color points and letting R be the smallest distance between
points of different color. It is clear that if U < R, then GROUP-EGALITARIAN = 1

2 . However, if
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U ≥ R, then GROUP-EGALITARIAN = 0. Note that we can make the value of R arbitrarily large as
shown in (a) and (b).

Figure 13: Examples where the tradeoff between the upper cost bound and the fairness objective is abrupt.

D.2 Example where the fairness increases gradually with higher cost upper bound

Consider the case where the points lie on a line and | Cred | = | Cblue | = | C |
2 = n′ where n′ is odd.

Clearly, | C | = n = 2n′. Further, let all of the first n′ points be red and the reaming n′ points be
blue. The distance between any two consecutive points is r. Figure 14 shows an example of such a
construction for n′ = 5.

It is not difficult to see that for the two clustering case (k = 2), that the optimal radius is
(n
′−1
2 )r, simply set the middle point of each color as the center. Note that we would have

GROUP-EGALITARIAN = 1
2 , i.e. no mixing of the colors.

If we index the upper U by the following U = U(m) = (n
′−1
2 + m)r where m is an non-

negative integer and m < n′

4 , then it is not difficult to show that the achievable fairness is
GROUP-EGALITARIAN(m) = 1

2 −
2m
n′ . That is, if we allow the cost to increase by mr, then

we can improve the GROUP-EGALITARIAN objective by 2m
n′ .

For example, in Figure 14, for U = U(0) = 2r, then we cannot mix the color and
GROUP-EGALITARIAN = 1

2 . If on the other hand, we choose U = U(1) = 3r, then for the
red color we can have a representation of 2

5 , leading to GROUP-EGALITARIAN(1) = 1
2 −

2
5 .

Figure 14: In the above example the tradeoff between the clustering cost and the fairness objective is gradual.

E Network Flow Rounding

Here, we summarize the network flow rounding due to [11] as applied to our problem. Recall that it
gives the following guarantees:

(i)
∑
i,j d

p(i, j)x̄ij ≤
∑
i,j d

p(i, j)xij .

(ii) ∀i ∈ {1, . . . , k} :
⌊∑

j∈C xij

⌋
≤
∑
j∈C x̄ij ≤

⌈∑
j∈C xij

⌉
(iii) ∀h ∈ H,∀i ∈ {1, . . . , k} :

⌊∑
j∈Ch xij

⌋
≤
∑
j∈Ch x̄ij ≤

⌈∑
j∈Ch xij

⌉
The first guarantee essentially states that we can round the fractional LP assignments to an integral
solution without increasing the cost given that we solved the LP for a fixed set of centers. However,
proving this depends on the objective. For k-center, assigning a point j to any center i with xij > 0
will not affect the cost of the solution with respect to the clustering objective. This is because k-center
only minimizes the maximum radius of any cluster and we only allow xij > 0 if dp(i, j) is at most
the maximum radius. On the other hand, a fractional solution to the LP for k-median or k-means may
fractionally assign part of a point to a nearby center and part to a faraway center to improve fairness.
A rounded integral solution that assign the point wholly to the farther center could potentially increase
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Figure 15: PoF versus the GROUP-UTILITARIAN objective for the CreditCard dataset with δ = 0.05.

the cost. The proof due to [11] defines these objectives as reassignable (k-center) and separable
(k-median and k-means) and focuses on the more challenging case of separable objectives.

We create a min-cost flow instance with unit capacities to solve this problem as follows.

• For each center i ∈ S, we define a subset of points Vi with a point vhi for each color h ∈ H
and a main point v0i . Each vhi has a balance of −

⌊∑
j∈Ch xij

⌋
and v0i has a balance of

−(
⌊∑

j∈C xij

⌋
−
∑⌊∑

j∈Ch xij

⌋
). The arc set of these points is (vhi , v

0
i ) for each color

h ∈ H and each arc has cost 0.
• For each point j ∈ C, we define a point vj with balance of 1. For each xij > 0 we add an

arc (vj , v
h
i ) with cost dp(i, j) where h is the color of j.

• Finally, we add a sink t with balance −(| C | −
∑
i ∈ S

⌊∑
j∈C xij

⌋
). For each center i, we

add an arc (v0i , t) with cost 0.

Note that all of the capacities, costs, and balances are integral and that the LP solution translates to a
feasible flow. Thus, we can find an integral flow solution with cost at most that of LP solution and it
is easy to see that this can then be translated back to an integral assignment. Also, note that our flow
solution almost preserves the fairness of the LP solution. The additive error of 1 for the second and
third guarantees above arise from taking the floor (e.g.,

⌊∑
j∈Ch xij

⌋
) to have integrality.

F Additional Experimental Results

In this section, we report additional experimental result on the k-means and k-median objectives.
We also use the CreditCard dataset from the UCI repository [24] with all 30,000 data points. The
fairness attribute we use is marriage where we merge groups 2 (single) and 3 (other) into one group
to have a binary attribute.

F.1 Additional k-means Results

F.1.1 GROUP-UTILITARIAN Objective

Here we add results for the GROUP-UTILITARIAN for the CreditCard dataset with δ = 0.05, see
Figure 15. We see that we can achieve better proportional violations for the smaller value of k.

F.1.2 GROUP-LEXIMIN Objective

Figure 16 shows the results for GROUP-LEXIMIN on the Census1990 dataset where we have k = 5.
We set δ = 0.05 and δ = 0.2, we see similar behaviour to that in Figure 3. We also notice that
for higher values of δ (more relaxed proportion bounds) some colors are able to achieve smaller
proportional violation which we expect.

31



Figure 16: PoF versus the GROUP-LEXIMIN objective for the Census1990 dataset for different values of δ.

Figure 17: PoF versus the GROUP-UTILITARIAN objective for the Adult, Census1990, and CreditCard datasets
with for the k-median objective.

F.2 k-median Results

For the color-blind implementation of the k-median objective we follow [10, 22] and use the 5-
approximation of [6] with modified D-sampling [5]. Because we are interested to see the behaviour
of the algorithm and since the color-blind approximation is time consuming we sub-sample all
datasets to 1,000 points.

F.2.1 GROUP-UTILITARIAN Objective

Figure 17 shows the performance on the different datasets for the GROUP-UTILITARIAN objective.
Note that we observe a similar trend as in figure 2 where it is easier to minimize the proportional
violations when the number of clusters is lower. Note that we set δ = 0.1 for all datasets.

F.2.2 GROUP-LEXIMIN Objective

Figure 18 shows the results on the GROUP-LEXIMIN objective on the Census1990 dataset with k = 5
and δ = 0.1. The behaviour is very similar to the k-means.

F.3 Checking the Size of the Smallest Cluster

Here we check the size of the smallest cluster again, for Section F.1 the smallest cluster is of size 176
for the CreditCard dataset and 168 for the Census1990 dataset.

In Section F.2 where the datasets have been sub-sampled to 1,000 points. The smallest cluster size
found is 27, 15, and 24 for the Adult, Census1990, and CreditCard datasets, respectively.

It is clear from these experiments that size of the smallest cluster is large and therefore the approxi-
mations we obtain are not far from the optimal.
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Figure 18: PoF versus the GROUP-LEXIMIN objective for the Census1990 dataset with k = 5 and δ = 0.1 for
the k-median objective.

G Details of the Randomized Extension

We give a sketch of the algorithm, and defer some of the proof and details to the full version. Suppose
the LP returns a solution xi,j ∈ [0, 1] for all (i, j), satisfying the following equalities for some
non-negative quantities ai and bi,h:

1. ∀j ∈ C:
∑
i xij = 1.

2. ∀i ∈ {1, . . . , k} :
∑
j∈C xij = ai.

3. ∀h ∈ H,∀i ∈ {1, . . . , k} :
∑
j∈Ch xij = bi,h.

4. ∀(i, j) : xi,j ∈ [0, 1].

We will sketch a randomized algorithm that gradually rounds the xi,j’s to the eventual x̄i,j in a
polynomial number of iterations. Let Yi,j,t denote the (random) value of xi,j at the end of iteration t;
initially, we deterministically have Yi,j,0 = xi,j . Let Ai,t and Bi,h,t be random variables such that

• ∀i ∈ {1, . . . , k} : Ai,t =
∑
j∈C Yi,j,t.

• ∀h ∈ H,∀i ∈ {1, . . . , k} : Bi,h,t =
∑
j∈Ch Yi,j,t.

Let us now describe iteration t ≥ 1, which operates on the values Yi,j,t−1 and probabilistically
modifies them to the Yi,j,t. Fix the values Yi,j,t−1 to be some arbitrary yi,j,t−1, and define ai,t−1 =
Ai,t−1, bi,h,t−1 = Bi,h,t−1. We will maintain the following five invariants:

(I1) ∀j ∈ C:
∑
i Yi,j,t = 1 with probability one.

(I2) ∀i ∈ {1, . . . , k} : bai,t−1c ≤ Ai,t ≤ dai,t−1e with probability one.
(I3) ∀h ∈ H,∀i ∈ {1, . . . , k} : bbi,h,t−1c ≤ Bi,h,t ≤ dbi,h,t−1e with probability one.
(I4) E[Yi,j,t] = yi,j,t−1.
(I5) Yi,j,t ∈ [0, 1] with probability one.

In particular, we have the following key properties:

• if ai,t−1 is an integer, then Ai,t = ai,t−1 with probability one;
• if bi,h,t−1 is an integer, then Bi,h,t = bi,h,t−1 with probability one; and
• if yi,j,t−1 is an integer (which will be 0 or 1), then Yi,j,t = yi,j,t−1 with probability one.

Our strategy is to show that there is a way of maintaining our invariants above, while making at least
one more Ai,t, Bi,h,t, or Yi,j,t integral at the end of iteration t. Since there is only a polynomial
number of these terms and since we are done when all the Yi,j,t’s are integers, our proof of correctness
will then be complete by a simple induction on t.
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Briefly, iteration t starts with the following constraint system with variables zi,j , initialized with the
feasible solution zi,j = yi,j,t−1:

(C1) ∀j ∈ C :
∑
i zij = 1.

(C2) ∀i ∈ {1, . . . , k} such that ai,t−1 is an integer :
∑
j∈C zij = ai,t−1.

(C3) ∀h ∈ H,∀i ∈ {1, . . . , k} such that bi,h,t−1 is an integer :
∑
j∈Ch zij = bi,h,t−1.

(C4) ∀(i, j) such that yi,j,t−1 is an integer (i.e., lies in {0, 1}) : zi,j = yi,j,t−1.

Given our initialization of z, we also have that ∀(i, j) : zi,j ≥ 0.

We prove below via a careful counting argument that the system (C1)-(C4) of the form Az = v is an
under-determined system. Thus, there is a nonzero vector r that is efficiently computable such that
Ar = 0. We then calculate certain positive scalars u1 and u2, and probabilistically transition from
the vector y = (yi,j,t−1) to the random vector Y = (Yi,j,t) as follows:

• with probability u2/(u1 + u2), set Y = y + u1r;

• with the remaining probability of u1/(u1 + u2), set Y = y − u2r.

Briefly, u1 and u2 are chosen positive and just large enough so that we maintain our five invariants,
while making at least one more Ai,t, Bi,h,t, or Yi,j,t integral at the end of iteration t.

Proof that (C1)-(C4) is an under-determined system. Let us call pair (i, j) rounded if yi,j,t−1
lies in {0, 1}, and floating otherwise (i.e., if yi,j,t−1 lies in (0, 1)). Let R and F respectively denote
the sets of rounded and floating pairs.

We next remove two types of redundant constraints from our system (C1)-(C4):

(R1) Given the constraints (C4), we can remove any constraint in (C1), (C2), or (C3) in which all
pairs (i, j) that appear in the LHS of the constraint, lie in R: such constraints are redundant
given (C4), and are removed.

(R2) If the constraint for i in (C2)—if it appears in (C2)—is linearly dependent on the constraints for
(i, ·) in (C3),7 then we say that i is (C2)-redundant and remove the constraint for i in (C2).

Clearly, removal of these redundant equalities does not change our system. From now on, (C1)-(C4)
refers to the reduced system after the removal of these redundant constraints.

We next define certain numbers of floating indices after the removals in (R1) and (R2). If the
constraint for j appears in (C1), let N1(j) denote the number of floating pairs (·, j) in the LHS of
this constraint. The second number of floating indices is defined in a slightly-more-refined manner: if
the constraint for i appears in (C2), let N2(i) denote the number of floating pairs (i, ·) in the LHS of
this constraint, that do not appear in the LHS of any of the constraints for (i, ·) in (C3). Next, if the
constraint for (i, h) appears in (C3), let N3(i, h) denote the number of floating pairs (i, ·) in the LHS
of this constraint.

We next make three useful observations. Note first that by (R1), we have N1(j) and N3(i, h) are
positive; in fact, since the constants in the RHS of (C1) and and (C3) are all integers, a moment’s
thought reveals that each of N1(j) and N3(i, h) is at least two. Second, we claim that each N2(i)
is at least two as well. Indeed, since the constraint for i appears in (C2), we must have that this
constraint is linearly independent of (in particular, is not the sum of) the constraints for (i, ·) in (C3);
hence, the LHS of the constraint for i in (C2) must have at least one variable not covered by the
constraints for (i, ·) in (C3), implying that N2(i) is positive as well. The fact that the constants in
the RHS of (C2) are integers, again implies that N2(i) ≥ 2. Third, suppose ai,t−1 is not an integer,
in which case we will say i is “(C2)-not-integral." In this case, it is easy to see that there must exist
some h such that zi,h does not appear in the LHS of any of the constraints (C2) and (C3).

We are finally to ready to prove that (C1)-(C4) is underdetermined. Note that the number of constraints
in (C4) is |R|, and that the total number of variables is |R| + |F |. Let n1, n2, and n3 denote the

7This simply means here that the constraint for i in (C2) is the sum of the constraints for (i, ·) in (C3), since
the latter are all supported on pairwise-disjoint sets of variables.
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respective numbers of constraints in (C1), (C2), and (C3). Recall again that these (C1)-(C3) refer to
the system after applying the removal steps (R1) and (R2).

Since each variable in (C1) appears only once in (C1) and since N1(j) ≥ 2, we get that

|F | ≥ 2n1. (10)

Similarly, from the consideration of (C2) and (C3) along with the observation above about indices i
that are (C2)-not-integral, we get

|F | ≥ 2(n2 + n3) + 1 if there is a (C2)-not-integral i (11)
≥ 2(n2 + n3) otherwise (12)

Thus, by averaging the above and using the fact that |F | is an integer, we obtain

|F | ≥ n1 + n2 + n3 + 1 if there is a (C2)-not-integral i (13)
≥ n1 + n2 + n3 otherwise (14)

Now, if our system is not under-determined, we must have that the total number of constraints, which
is n1 + n2 + n3 + |R|, is at least as large as the total number of variables |F |+ |R|. We see from
(13) that this is impossible if there is a (C2)-not-integral i. Thus we may assume that there is no
(C2)-not-integral i, and hence that the number of constraints exactly equals the number of variables.
We will next show that this system is linearly dependent, which, from the fact that the number of
constraints equals the number of variables, will show that the system is under-determined. Assume
for convenience that no constraint in (C2) for any i was removed in (R2) (if not, we simply replace
this constraint by the sum of the constraints for (i, ·) in (C3), in the following argument). Then, a
moment’s reflection shows that the sum of the constraints in (C1) equals the sum of the constraints in
(C2), yielding the desired linear dependence.
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