arXiv:2202.11095v1 [cs.GT] 22 Feb 2022

The Dichotomous Affiliate Stable Matching Problem: Approval-Based Matching
with Applicant-Employer Relations

Marina Knittel, Samuel Dooley, John P. Dickerson
Computer Science Department, University of Maryland

{mkanittel, sdooley1, john}@cs.umd.edu

Abstract

While the stable marriage problem and its variants
model a vast range of matching markets, they fail
to capture complex agent relationships, such as the
affiliation of applicants and employers in an inter-
view marketplace. To model this problem, the ex-
isting literature on matching with externalities per-
mits agents to provide complete and total rank-
ings over matchings based off of both their own
and their affiliates’ matches. This complete order-
ing restriction is unrealistic, and further the model
may have an empty core. To address this, we in-
troduce the Dichotomous Affiliate Stable Matching
(DASM) Problem, where agents’ preferences in-
dicate dichotomous acceptance or rejection of an-
other agent in the marketplace, both for themselves
and their affiliates. We also assume the agent’s
preferences over entire matchings are determined
by a general weighted valuation function of their
(and their affiliates’) matches. Our results are three-
fold: (1) we use a human study to show that real-
world matching rankings follow our assumed valu-
ation function; (2) we prove that there always exists
a stable solution by providing an efficient, easily-
implementable algorithm that finds such a solution;
and (3) we experimentally validate the efficiency of
our algorithm versus a linear-programming-based
approach.

1 Introduction

In many markets, two classes of participants seek to be paired
with each other. For example, in labor markets, workers are
paired with firms [Perrault ef al., 2016]; in online advertising,
eyeballs are paired with advertisements [Shen et al., 2020;
Dickerson e al., 2019]; and, in morally-laden settings such
as refugee resettlement and organ donation, refugees are
paired with new housing locations [Jones and Teytelboym,
2018] and donors are paired with needy recipients [Ashlagi
and Roth, 2021; Li et al., 2014], respectively. The field
of market design purports to provide analytically-sound and
empirically-validated approaches to the design and fielding of
such matching markets, and necessarily joins fields such as
economics and computer science [Roth, 2002; Roth, 2018].

The seminal work of Gale and Shapley [1962] charac-
terized the stable marriage problem, where both sides of a
market—workers and firms, refugees and settlement loca-
tions, etc.—express preferences over the other side, and the
goal is to find a robust matching that does not unravel in the
face of agents’ selfish behavior. Myriad generalizations were
proposed in the following decades; see Manlove [2013] for
an overview of the history and variants of these problems.
Largely, these models assume that agents’ preferences only
consider the direct impact of an outcome on that agent.

One extension of stable marriage is matching with exter-
nalities wherein agents on each side of a two-sided market
have preferences over their own match and the matches of
others. These models often incorporate many more realis-
tic and complex assumptions which makes for a richer and
harder to analyze matching setting [Pycia, 2012; Echenique
and Yenmez, 2007; Baccara et al., 2012]. Sasaki and
Toda [1996] first introduced matching with externalities,
where agents’ decisions to deviate from a proposed match
depended on reasonable assumptions for the reaction of other
agents to the deviation. Hafalir [2008] and Mumcu and
Saglam [2010] expand upon this stability notion for one-to-
one matchings with further restrictions on agent behavior;
while Bando [2012; 2014] extends the analysis to many-to-
one matchings where firms consider other firms’ externalities.

Much work in the matching with externalities literature
focuses on the appropriateness of various stability defini-
tions. Much analysis then centers on the complexity and
hardness of the proposed matching algorithms. For instance,
Brénzei [2013] models agent values in matching with exter-
nalities as arbitrary functions and creates a valuation as a
sum over the agent’s values over all matches. In our work,
an agent values a match as either acceptable or unaccept-
able (dichotomously), and we do a (weighted) sum over all
relevant matches for the agent to get their valuation. While
there is existing work on the complexities of these match-
ings, eliciting general preferences over a complex market can
be intractable, both with respect to human ability and com-
putational/communication complexity [Rastegari et al., 2016;
Sandholm and Boutilier, 2006]. One commonly imposed as-
sumption is that of dichotomous preferences [Bogomolnaia
and Moulin, 2004], which coarsely places alternatives into
acceptable or unacceptable bins.

This work is inspired by Dooley and Dickerson [2020],
which explores matching with externalities in academic fac-

ulty hiring; however, in our work, we analyze the marketplace
with dichotomous preferences. Our main motivation is the
academic faculty inferview marketplace, where we match in-
terview slots for universities and graduating students, and uni-
versities care about their graduating students’ matches. Other
motivations include playdate matching, study abroad, student
project allocation, and the dog breeding market.

We note that the only simplification we introduce to the
Dooley and Dickerson model is that of binary preferences.
This assumption is prevalent in various matching settings
like resource allocation [Ortega, 2020] and more specifi-
cally in the allocation of unused classrooms in a school set-
ting [Kurokawa er al., 2018] and barter exchange [Aziz,
2020]. With this additional assumption, we are able to pro-
vide positive and constructive principled approaches to clear-
ing (dichotomous) affiliate matching markets.

Our contributions. We view our contributions as follows.

* We introduce the Dichotomous Affiliate Stable Match-
ing (DASM) Problem, which characterizes the affili-
ate matching problem under dichotomous preferences to
better accommodate realistic preference elicitation con-
straints, along with a valuation function for agents to
rank matches based off their preferences, parameterized
by an employer’s relative valuation of its affiliates’ and
its own matches (§2);

e We run a human survey to provide support for the model
design choices, showing that real people in some situa-
tions may, indeed, adhere to our valuation function un-
der different parameters (§3);

* We propose an efficient algorithm to solve the DASM
Problem (§4), i.e., yield a stable matching; and

* We perform experimental validation of our algorithmic
approach to verify its correctness and scalability (§5).

2 Model Definition

We now present our matching model. This model represents
hiring interview markets where applicants have previous af-
filiations with employers and preferences are encoded as bi-
nary values that denote interest or disinterest (i.e., dichoto-
mous preferences [Bogomolnaia and Moulin, 2004]). We de-
scribe the model in the most general many-to-many setting.
We formalize the model, including defining valuation func-
tions (§2.1), stability, and other useful concepts (§2.2).

2.1 The Dichotomous Affiliate Stable Matching
Problem

In the Dichotomous Affiliate Stable Matching (DASM) Prob-
lem, we are given sets A of n applicants and E of m em-
ployers. For every a € A (resp. e € FE), we are given
a complete preference function pr, : E — {0,1} (resp.
pr¢ : A — {0,1}, the notational difference will be clear
later). If w and v are on opposite sides, then we say u is
interested in or likes v if pr,(v) = 1 (or pr¥(v) = 1if
u € FE), otherwise u is disinterested in v. The many-to-
many matching scenario specifies that v might be matched
with as many as g(u) agents on the other side of the market,
where ¢(u) is the capacity of u. A valid matching is a func-
tion p : AU E — 24YF such that for any a € A (resp.
e € E): u(a) C E (resp. p(e) C A), |u(a)| < q(a) (resp.
|u(e)| < g(e)), and e € p(a) if and only if a € p(e).

One defining aspect of this market is the notion of affili-
ates which represent previous relationships between agents.
Let aff : £ — 24 return an employer’s set of affiliate. For in-
stance, in Figure 1, a; is e;’s affiliate, and as and a3 are both
eo’s affiliates. Then aff(e;) = {a1}, aff(e2) = {a2,as},
and aff(eg) = (. Note that aff over all e € E forms a
disjoint cover of A, so each applicant is the affiliate of ex-
actly one employer. In this model, e cares about its affiliates’
matches. To express this, for any a € aff(e), e has prefer-
ences pr¢ : E — {0,1}. To account for these preferences,
e’s valuation of matchings is over tuples of its own and its af-
filiates’ matches. While these valuations may be general, we
will examine a natural and flexible additive valuation method.

Definition 1. For any e € E and a € A, we define the
weighted valuation function over a match i for a given
weight A € [0, 1] as:

val,(p) = Z pré(a®) + A Z Z pre’(e”)

a*eu(e) a;€aff(e) e*epla;)

val()) = 3 pra(e).

e*€pn(a)

And we say e or a prefers i to ' (u = p' or p =4 i) if and
only if val,(p) > val.(u') or val,(u) > val, (i').

This function does not necessarily create a total order over
matchings, as an agent may have the same valuation for two
distinct matchings. Then it does not prefer one matching to
another. In the employer version, \ parameterizes how em-
ployers weigh the value of their affiliates’ matches with re-
spect to their own matches. If A = 1, then an employer
cares about each affiliate match as much as each of its own
matches. If A = 0, employers do not care about their affili-
ates” matches. Setting A = ¢ for small € > 0 yields a lexico-
graphic valuation where employers care about their matches
first and only use affiliates’ matches as tiebreakers.

To understand the role of A, consider again our example
in Figure 1 and let A = 1. Then ey’s valuations of u and p’
are: vale, (1) = 3 (since it likes one of its matches and both
of its affiliates’ matches) and val., (1/) = 2 (since it likes
both of its matches). Therefore p ., u'. If A = ¢, then
e2’s valuations of the matchings are: val, (1) = 1 + 2¢ and
vale, (') = 2. This means p <., p'. As we discuss later,
this illustrates how A can affect which matchings are stable.

2.2 Blocking Tuples and Stability

Next, we define the notion of stability in the DASM Prob-
lem. As in the standard stable marriage problem [Gale and
Shapley, 1962] and its many variants, our notion of stability
relies on the (non)existence of blocking tuples. The blocking
tuple—traditionally, blocking pair—is designed to identify
a set of unmatched individuals who might cheat in order to
match with each other. We formalize cheating as follows:

Definition 2. Consider an instance of the DASM Problem
with matching p. An agent a € A U E cheats if they break a
match with some agent a’ € p(a).

Like in the standard stable marriage problem, we would

v'for self: aq,as

es3: v a1 HE He fora;: e3

v'for self: aq, ag

e, e v a2 M ol e for as: eo
V'for as: ey, e3
es: v a3 W W es v for self: aq, as, as

X R

Figure 1: An example matching problem. On the left are affiliations and preferences for each agent. The capacity of each agent is represented
with squares. For instance, ez has aff(e2) = {a2,as}, g(e2) = 2, and it approves of a; and a3 for itself, ey for affiliate az, and e; and es
for affiliate a3. On the right, we have a potential matching p with an alternate matching u’. Note that p’ is the swapped matching of u with

respectto 7 = (as, az, az, ez, e1,€1).

like to ensure that no two agents! & € A and e € E will
agree to cheat on their assigned match to (possibly) match
with each other assuming no other agents cheat. In stable
marriage, the only way (up to) two agents will cheat, and thus
cause instability, is if they prefer each other to their matches.

In our setting, stability is not as simple. Leta € A and e €
E be two agents who consider cheating on matches e’ € p(a)
and @’ € u(e) respectively. Once ¢’ and o’ lose their matches
with a and e, they could naturally consider filling that empty
space in their capacities by matching with each other (this is
not cheating). In stable marriage, we do not need to model
€’’s and a’’s reaction because this does not impact ¢’s and
a’s decisions to cheat. In the DASM Problem, however, e’s
preference profile is more complicated. For instance, if a’ €
aff(e), and e wants o’ to be matched with e’, e might decide
to cheat on a’ so that @’ will fill its new empty capacity by
matching with ¢’. Note that this still does not require a’ or
¢’ to cheat, since they are only forming matches instead of
breaking them.

To this end, we define our notion of the blocking tuple to
capture not only the cheating between two agents, but also the
responses of those whose matches have been broken.

Definition 3. Consider an instance of the DASM Problem
with matching pv and some tuple T = (aq,...,ar) where
a; € AUE forall i € [k]. Construct i/ with the following
process:

1. Allow up to two agents in T to cheat on one match each.
If exactly two agents cheat, they then match with each
other. Otherwise, the sole cheater may match assuming
this new match does not violate any capacities.

2. All other agents in T are then allowed to form new
matches up to their capacity.

Then T is a blocking tuple if: (1) all cheating agents strictly
prefer 1 to u, and (2) for any other agent a € T that forms
a match with o' € T, a strictly prefers p' to ' \ {(a,a’)}.
An instance of the DASM Problem is stable if and only if it
contains no blocking tuples.

In stable marriage, this becomes the same standard notion
of cheating, and therefore this is a natural extension of the sta-
ble marriage blocking pair. In Definition 3, a cheating agent
would only cheat if they know other agents could respond in a
way such that the resulting matching is preferable to the orig-
inal matching. After cheating occurs, non-cheating agents
will respond with a match if they would prefer to have that

'In future work, this could be generalized to coalitions, or larger
sets of agents.

match in the final matching. Thus, non-cheating agents are
not performing calculated activity; they are simply reacting.
Interestingly, we only need to consider tuples of size at
most six that satisfy certain properties to determine if a block-
ing tuple exists. See Proposition 2 and Appendix B for rea-
soning and a proof. These properties are captured by the po-
tential blocking tuple, a tuple of size at most six with the ap-
propriate agents such that, given the right preference profiles,
they could be blocking tuples. To accommodate the sextu-
plet notation, we introduce the “empty agent”, -, and a set
& = {~}, which represents the absence of an agent. Formally,
v is an agent in the system with no side or affiliation and zero
capacity. Additionally, given a matching p, we must notate
the agents who have remaining capacity. Let IV, :‘ ={a€A:

|u(a)] < qa)} and N7 = {e € E: |u(e)| < q(e)}.
Definition 4. Consider an instance of the DASM Problem
with matching p. A tuple T = (a,a’,a” e e’ e") is a poten-
tial blocking tuple for (. if all the following hold:

l.ac A

e € E\ p(a)

a' € p(e) UE, wherea' € € only ife € N

e € ula)UE, wheree' € Eonlyifac N:‘

a’ e (N;f‘UEU{a'})\u(e/), where o € E ife’ € &€
e’ e (NFUEU{}) \ u(a'), wheree” € € ifd € €
a"=d ¢ Eifandonlyife’ =¢e ¢ &

We now clarify the purpose of each condition respectively:

N S A WD

1. a must be an applicant.

2. e must be an employer that is not matched with a (else
they cannot form a blocking tuple).

3. a’ is e’s old match that is broken. If e simply has addi-
tional capacity, then o’ € £ is an empty agent.

4. €’ is a’s old match that is broken. If a simply has addi-
tional capacity, then e’ € £ is an empty agent.

5. a" is €’’s new match. It must have unmatched capacity,
or (if ¢’ and a’ decide to match) is instead a’ itself. It
could be an empty agent if ¢’ does not rematch (and must
be if ¢’ is an empty agent). Additionally, we must ensure
it was not previously matched to €’.

6. €” is a’’s new match. It must have unmatched capacity,
or (if ¢’ and a’ decide to match) is instead e’ itself. It
could be an empty agent if @’ does not rematch (and must
be if @’ is an empty agent). Additionally, we must ensure
it was not previously matched to a’.

7. If ¢’ matches with a’ (where o/ = a” ¢ &), then o’ must
match with e’ (where ¢/ = ¢’ ¢ &).

Consider Figure 1 and tuple (as, as, as, ea,e1,€1). Some
agents are duplicated in this tuple; this is okay. This potential
blocking tuple describes the following changes: (1) a3 breaks
its match with ey, (2) es breaks its match with ao, (3) a3 and
e2 match together, and (4) as and e; match together. Note
that the last part occurs because as and e; appear twice in
the tuple. If we rewrite the tuple as (as, as,ah,es,eq,e€})
to distinguish duplicate instances, then a/, indicates that e;
matches with as and €/ indicates ay matches with e;.

Definition 4’s matching constraints ensure that broken and
formed matches in this process make sense (e.g., no two
agents will be matched to each other twice). When we con-
sider a blocking tuple, we must compare the matching to the
alternative matching that occurs after swapping as described.

Definition 5. Consider an instance of the DASM Prob-
lem with matching 11 and a potential blocking tuple T =
(a,a’,a" e e’ e"). Let i’ be defined by starting at y, break-
ing the matches (a,e’) and (d',€), adding match (a,e), and
adding matches (a’,e") and (a”, €') if and only if those vari-
ables are not in € respectively. Then 1 is the swapped match-
ing of 1 with respect to T .

In Figure 1, u’ is the swapped matching of p with respect
to (as, az, as, ez, e1, e1). Note that it is a valid matching.

Proposition 1. If u is a matching and 1 is the swapped
matching of pu with respect to some potential blocking tuple
T, then 1 is a matching.

See Appendix B for a proof. Now we show that the set of
potential blocking tuples are sufficient consideration to show
that an instance of the DASM Problem is unstable.

Proposition 2. Consider an instance of the DASM Problem
with matching p. Then u is unstable if and only if there ex-
ists a potential blocking tuple T = (a,d’,a” e, €', e") with
respective swapped matching 1’ for u such that:

Lo =q 1

H=e pt!

Ifa" ¢ & then p' \ {(a’,e")} <ar f
e ¢ & then j/ \ {(a",)} <o p
I’ ¢ & then '\ {(a",€)} <ar 1
6. Ife” ¢ &, then i/ \ {(d/, e”)} < p

See Appendix B for a proof. In the rest of the paper, we
assume all blocking tuples take this form. The first two con-
ditions ensure that a and e prefer the new match p’ to . The
next four state that in the context of y’, all of a’,¢’,a”, and
e must actively desire the new match. In these conditions,
we only care if a’, a”, €/, and €’ are not in & (i.e., they exist).

Consider again Figure 1 when A\ = 1. Recall that T =
(as,az,as,e2,€1,e1) is a potential blocking tuple for x4 and
1 is the swapped matching of u with respect to 7. Under our
weighted valuation function with A\ = 1, we already showed
that eo prefers p’ to p. Additionally, since az doesn’t like
its match in y but likes its match in p’, it also prefers p’.
Once ag and ey have broken their matches with as and e
respectively, as and e; have an active interest in matching.
This implies that 7 satisfies all constraints in Proposition 2

SO NS

A=1
Scenario 1 2 3 4 5 6 7 8

Random 10% 5% 5% 3% 100% 10% 10% 3%
Observed Unprimed 41% 31% 30% 56% 100% 42% 25% 30%
Observed Primed 1% 4% 35% 55% 100% 51% 22% 45%

A=¢€
Scenario 1 2 3 4 5 6 7 8
Random 3% 1% 1% 3% 20% 3% 3% 1%

Observed Unprimed 14% 15% 18% 56% 30% 17% 16% 17%
Observed Primed 18% 34% 20% 55% 37% 28% 10% 34%

Table 1: Percentage of respondents who followed a weighted valua-
tion function with A = 1 and A = € for both primed and unprimed
subjects. These are compared to the expected percentage if individ-
uals were choosing randomly.

and is a blocking tuple. When A\ = ¢, since e, does not prefer
1 to i, this is not a blocking tuple.

3 Evidence from a Human Experiment

This survey strives to evaluate the applicability of our valua-
tion function proposed for the DASM Problem. More details
of methods and results can be found in Appendix C.

In the survey, participants were asked to identify as a uni-
versity in a DASM Problem instance with an affiliated grad-
uating student. Across multiple problem instances, the sur-
vey presented the user with binary preferences over relevant
matches and five possible matchings. It then asked the users
to rank the matchings. For each question, we found the pref-
erence profiles that emerge from our weighted valuation func-
tion when A\ € {¢,1} and then computed: (1) the chance of
randomly selecting the profiles, and (2) empirical adherence
to the profiles. These results are depicted in Table 1.

Our results show that participants’ ranking adherence to
each valuation function is statistically significant, though
not consistent. For a deeper quantitative analysis, see Ap-
pendix C. More qualitatively, participants expressed differing
philosophies. Some participants were very direct with their
strategles even stating: “My needs first, then Ryan’s”, where
Ryan is the example affiliate. We see that our two valua-
tion function versions align with this general strategy. On the
other end of the spectrum, there were participants who were
uncomfortable with the ability to express a preference over
their affiliate’s match. One participant said, “If Ryan doesn’t
get matched with my school, why would I care what others he
matched with? Is it any of my business?” This indicates that
there are clearly different strategies, but also different philo-
sophical approaches to the affiliate matching problem.

4 DASM Solved in Quadratic Time

We now introduce a quadratic (in the number of agents) algo-
rithm, SmartPriorityMatch, to solve the DASM Problem for
general weights. We assume the inputs are provided as a set
A of applicants and E of employers, where each agent reports
all appropriate approval lists (i.e., lists of binary values). Let
n = |A] and m = |E|. All proofs are in the Appendix.

Theorem 1. SmartPriorityMatch solves the DASM Prob-
lem in O(nm) time for X € [0, 1].

Theorem 1 is proved at the end of Appendix D.2. Smart-
PriorityMatch, shown in Algorithm 1 in Appendix D.4, ef-

fectively puts a “priority level” on each applicant-employer
pair. For instance, a pair (a,e) € AXx E where a € aff(e) and
each agent is maximally interested in the match (pré(a) = 1,
pré(e) = 1, and pr,(e) = 1) is a “highest” priority edge. For
each priority level, we construct bipartite graphs with parti-
tions A and E where edges correspond to pairs of that prior-
ity level. The edge sets for the different priority levels (from
highest to lowest priority) are as follows:

Go- Edges between an e € E and o € aff(e) if they have
maximum interest for the match: pré(a) = 1, pré(e) =
1, and pr,(e) = 1.

G1- Edges between an e € E and a € A\ aff(e) if they are
interested in each other: pré(a) = 1 and pr,(e) = 1.

G2- Edges between an e € F and a € aff(e) if they are
interested in each other for their own match: pré(a) = 1
and pr,(e) = 1.

G3- Edges between an e € E and a € aff(e) if e is interested
in itself for a and « is interested in e: pr%(e) = 1 and
pr,(e) = 1.

Next, we would like to run simple maximal b-matchings
(i.e., many-to-many matchings) on these graphs in this order,
decreasing the quotas as matches are made. Unfortunately,
this method cannot ensure stability. Call this algorithm Prior-
ityMatch. While this does not provide us with the desired re-
sults, it will set a strong foundation for SmartPriorityMatch.

Lemma 1. There exists a DASM Problem instance where
PriorityMatch may not find a stable matching.

See Appendix D.2 for a proof. Intuitively, PriorityMatch’s
fault is that it is not sufficiently forward-looking. For in-
stance, an employer e that can match with one of two of its
affiliates a1 and ag in G cannot greedily distinguish between
the two. Therefore it could arbitrarily match with a;, and as
could match with some other employer ¢’ in G;. Perhaps
e likes the match (¢/,a1) and not (¢, as), in which case it
should have matched with ao and let a; match with ¢’. This
creates a blocking tuple (e, €', €', as, a1,a1). This problem
only arises when an employer might match with its affiliates
who have the opportunity to match with other employers later
on, which only happens on G. However, we find that Pri-
orityMatch could find a stable matching for these examples
given a smart enough way to find the maximal b-matchings.

Lemma 2. PriorityMatch solves the DASM Problem with
parameter \ € [0,1] in O(nm) time if it can ensure that for
any potential blocking tuple T = (a,d’,;a” e, e, e") such
that a,a’ € aff(e) and a prefers the swapped matching of
with respect to T, then:

pré(a’)+Apre(e')+Aprd (€) > pré(a)+Apre(e)+Aprd ().

See Appendix D.2 for a proof. To achieve this, our maxi-
mal b-matchings must be dependent on lower-priority graphs.
Instead of running the maximal b-matchings in order, we will
use reserved matchings, defined as follows.

Definition 6. Consider a graph G = (V, E,q,S,), where
V, E, and q are the standard b-matching parameters, S C 2V

is the set of affiliations, and r : S — N is a reservation
Junction such that r(S) < |S| forall S € S. A reserved

maximal b-matching 1. is a b-matching that is maximal under
the additional constraint that for each S € S, there are at
least r(S) elements in S that have not met their capacity:
{s € S:luls)l <qls)} =r(S).

Consider an affiliation with 10 vertices, each with 100 ca-
pacity. The affiliation might have a reservation of 9 (of a max
possible 10). We could match each vertex in the affiliation 99
times and one vertex 100 times. Only one vertex has reached
its capacity, thus satisfying the reservation. We defer to Ap-
pendix D.1 for a simple greedy solution to this problem.

Our algorithm starts with a reserved matching on Gi,
where reservations are used to ensure we can still find a
maximal matching on G, afterwards. Since each a € A
may only be adjacent to aff *(a) in Gy, Gy is a set of dis-
joint stars with centers e € E. This lack of interference al-
lows e to match to any subset S C Ny(e) of size exactly
|S| = min(|No(e)|, go(€)), where Ny(e) is the neighborhood
around e in G and go(e) is the capacity of e in Go (which
is equivalent to its starting capacity). To ensure e can do this
after a reserved maximal b-matching in (G;, we must reduce
the quota of e in G to ¢1 = go(e) — min(|Ny(e)|, go(e))
and ensure that at least min(|Ny(e)|, go(e)) of its neighbors
in Ny(e) have at least one capacity remaining via a reserva-
tion on Ny(e). Therefore, when we run the reserved maximal
b-matching on G1, we use affiliations S; = {Ny(e),e € E}
with reservations 7(Ny(e)) = min(|No(e)], go(€)).

The algorithm thus works as follows: run a reserved max-
imal b-matching on G; and then proceed with the standard
PriorityMatch process on Gy, G4, and G3. For more details,
see the pseudocode of Algorithm 1 in Appendix D.4. It is not
hard to see that the four resulting matchings are disjoint. We
can show in our proofs that SmartPriorityMatch is in fact an
intelligent implementation of PriorityMatch.

Lemma 3. SmartPriorityMatch’s output will always be
equivalent to that of PriorityMatch with a specific maximal
matching function.

See Appendix D.2 for a proof. Finally, we can show
that SmartPriorityMatch satisfies the conditions posed in
Lemma 2. This concludes Theorem 1. We briefly note that
this algorithm solves the problem for any weight A € [0, 1],2
however the algorithm itself does not depend on A. Thus,
there must exist a matching that is stable for all A\. We con-
jecture that increasing the value of A simply makes stability
more difficult to achieve (i.e., for 1 > X\ > X > 0, a stable
solution for X is also stable for \').

5 Scalability Experiments

This section provides experimental validation for the
polynomial-time scalability of SmartPriorityMatch, as ana-
lyzed in Theorem 1. To the best of our knowledge, our model
is new, so there is no direct benchmark from the literature.
Because of this, following the path of others (e.g., recently
Cooper and Manlove [2020]), we instead model our prob-
lem as an integer linear program (ILP) and compare against
that baseline. As in Cooper and Manlove [2020] and other
works, we also use that ILP as a “safety check” to ensure

“We additionally note that with a slight modification to edge pri-
ority, our algorithm could work for A € [0, c0).

Runtime (sec)

H

2 To s60 1000 2000 00 01

o s
Number of employers Number of employers

50 250
Applicant capacity

560 01 02 03 04 05 06 07 08 09

T 20
Affiliates per employer Interest threshold

(a) Runtime vs (b) Runtime for (©) Runtime (d) Runtime over (e) Runtime over
ILP runtime for large values of m. over different different values of different approval
small values We set n/m = 5, capacities. We n/m. We set thresholds. We set
of m. We set g =5 andt = set m = 1000, m = 1000, ¢ = m = 1000, ¢ =
n/m=2,q=3, 0.5. n/m = 5, and 5,and t = 0.5. 5,and n/m = 5.
and t = 0.5. t=0.5.

Figure 2: Runtime of SmartPriorityMatch while varying: number of employers (m), the capacities of the applicants (¢), and the number of
affiliates per employer (n/m). Note that the number of applicants is m and the capacity of the employers is g - n/m.

that our algorithmic approach and a general mathematical-
programming-based solution method align in their results.
The formulation of the ILP and its proof can be found in Ap-
pendix E. It translates the set of potential blocking tuples (i.e.,
our blocking tuple search space) into ILP constraints. Since
there are O(n®-m?) potential blocking tuples on n applicants
and m employers, the ILP has O(n® - m?) constraints.

To confirm the efficiency of SmartPriorityMatch, we
compare it to the baseline ILP described in Appendix E.
We use the same runtime experiments used by Tziavelis et
al. [2019] adapted to the DASM setting.> We have four pa-
rameters: (1) m, the number of employers, (2) n/m, the num-
ber of affiliates per employer, (3) g, the capacity for each ap-
plicant, and (4) t € (0, 1), a threshold parameter. This means
that the number of applicants is n, and we let employer ca-
pacity be g - n/m. We use Tziavelis et al. [2019]’s Uniform
data, where we find a uniform random total ranking for each
agent and we use the threshold parameter such that an agent
with ranking r is approved if » > ¢ - n. In other words, for
each agent, we assign a preference of 1 to the top 100t% of
its uniformly randomly ranked preferences. In Figure 2, we
run 50 trials for each setting and take the average runtime.

We then vary m from 5 to 20 and compare the perfor-
mances of SmartPriorityMatch and the ILP (Figure 2a) with
n/m =2,q = 3,and t = 0.5 fixed. Since the ILP requires
O(n®-m?) constraints, its runtime is very large for even small
n. Due to our system’s space constraints, we were only able
to go up to n = 20. We plotted the performance of the ILP
with and without the time to initialize the ILP. We see that
SmartPriorityMatch exhibits much better performance, par-
ticularly when we include the time to initialize the ILP itself.

Next we plot SmartPriorityMatch’s performance on
larger sets, varying parameters one at a time. With m from 10
to 4000 (Figure 2b), we further support its scalability over the
ILP. Varying ¢ from 5 to 500 (Figure 2c), we see SmartPrior-
ityMatch is dependent on capacity, but in practical ranges, it
has less of an impact than varying m. With n/m from 5 to 30
(Figure 2d), we see that increasing n/m has a significant im-
pact on runtime. Finally, varying ¢ from 0.10 to 0.90, smaller

3That work addresses the traditional stable marriage problem and
is thus not directly comparable to ours, but we adapt their experi-
mental setup to our setting.

thresholds appear to increase the runtime (i.e., when agents
have a lower bar for expressing interest in other agents).

6 Conclusions & Future Research

We propose a new model, the DASM Problem, that char-
acterizes Dooley and Dickerson [2020]’s affiliate matching
problem under dichotomous preferences. Dichotomous, or
approval-based, preferences are often more realistic for pref-
erence elicitation and their application to this model allows
for stronger theoretical results. To rank matchings, we use a
weighted function that computes agent matching valuations
based off their and their affiliates’ preferences. In a human
survey, we support the real-world value use of the valuation
function with different weights. We then develop (and prove)
a quadratic time algorithm to solve the DASM Problem, ex-
perimentally validating its efficiency against a baseline ILP.

This work could be extended by considering more general
valuation functions, particularly by giving employers more
freedom over the relative value of their and their affiliates’
matches. We may draw intuition from recent “same-class”
preference extensions to the stable marriage problem such
as the work of Kamiyama [2020] or from stable matching
work with constraints [Kawase and Iwasaki, 2020]. Simi-
larly, we should consider concerns of fairness (other than sta-
bility). Fair stable matching has a long history [Feder, 1995;
McDermid and Irving, 2014], with hardness results [Gupta et
al., 2019] for various forms of matching (e.g., with incom-
plete preferences [Cooper and Manlove, 2020] or other fair-
ness constraints such as median-ranked assignment [Sethura-
man et al., 2006], equitable matching [Tziavelis et al., 2019],
procedural fairness [Tziavelis er al., 2020], etc.), many of
which could be applied to the DASM setting.

References

[Ashlagi and Roth, 2021] Ttai Ashlagi and Alvin E Roth.
Kidney exchange: an operations perspective. Management
Science, 2021.

[Aziz, 2020] Haris Aziz. Strategyproof multi-item exchange
under single-minded dichotomous preferences. AAMAS,
2020.

[Bgccara et al., 2012] Mariagiovanna Baccara, Ayse
Imrohoroglu, Alistair J Wilson, and Leeat Yariv. A field
study on matching with network externalities. AER, 2012.

[Bando, 2012] Keisuke Bando. Many-to-one matching mar-
kets with externalities among firms. Journal of Mathemat-
ical Economics, 2012.

[Bando, 2014] Keisuke Bando. A modified deferred accep-
tance algorithm for many-to-one matching markets with
externalities among firms. Journal of Mathematical Eco-
nomics, 2014.

[Bogomolnaia and Moulin, 2004] Anna Bogomolnaia and
Hervé Moulin. Random matching under dichotomous
preferences. Econometrica, 2004.

[Branzei et al., 2013] Simina Branzei, Tomasz Michalak,
Talal Rahwan, Kate Larson, and Nicholas R Jennings.
Matchings with externalities and attitudes. In AAMAS,
2013.

[Cooper and Manlove, 2020] Frances Cooper and David
Manlove. Algorithms for New Types of Fair Stable Match-
ings. In SEA, 2020.

[Dickerson et al., 2019] John Dickerson, Karthik Sankarara-
man, Kanthi Sarpatwar, Aravind Srinivasan, Kung-Lu Wu,
and Pan Xu. Online resource allocation with matching
constraints. In AAMAS, 2019.

[Dooley and Dickerson, 2020] Samuel Dooley and John P
Dickerson. The affiliate matching problem: On labor mar-
kets where firms are also interested in the placement of
previous workers. arXiv preprint arXiv:2009.11867, 2020.

[Echenique and Yenmez, 2007] Federico Echenique and
M Bumin Yenmez. A solution to matching with prefer-
ences over colleagues. GEB, 2007.

[Feder, 1995] Tomés Feder. Stable networks and product
graphs, volume 555. AMS, 1995.

[Gale and Shapley, 1962] David Gale and Lloyd S Shapley.
College admissions and the stability of marriage. The
American Mathematical Monthly, 1962.

[Gupta er al., 2019] Sushmita Gupta, Sanjukta Roy, Saket
Saurabh, and Meirav Zehavi. Balanced stable marriage:
How close is close enough? In WADS. Springer, 2019.

[Hafalir, 2008] Isa E Hafalir. Stability of marriage with ex-
ternalities. IJGT, 2008.

[Jones and Teytelboym, 2018] Will Jones and Alexander
Teytelboym. The local refugee match: Aligning refugees’
preferences with the capacities and priorities of localities.
Journal of Refugee Studies, 2018.

[Kamiyama, 2020] Naoyuki Kamiyama. On stable match-
ings with pairwise preferences and matroid constraints. In
AAMAS, 2020.

[Kawase and Iwasaki, 2020] Yasushi Kawase and Atsushi
Iwasaki. Approximately stable matchings with general
constraints. In AAMAS, 2020.

[Kurokawa et al., 2018] David Kurokawa, Ariel D Procac-
cia, and Nisarg Shah. Leximin allocations in the real
world. ACM TEAC, 2018.

[Li et al., 2014] Jian Li, Yicheng Liu, Lingxiao Huang, and
Pingzhong Tang. Egalitarian pairwise kidney exchange:
fast algorithms via linear programming and parametric
flow. In AAMAS, 2014.

[Manlove et al., 2022] David F. Manlove, Duncan Milne,
and Sofiat Olaosebikan. Student-project allocation with
preferences over projects: Algorithmic and experimental
results. Discret. Appl. Math., 2022.

[Manlove, 2013] David Manlove. Algorithmics of matching
under preferences. World Scientific, 2013.

[McDermid and Irving, 2014] Eric McDermid and Robert W
Irving. Sex-equal stable matchings: Complexity and exact
algorithms. Algorithmica, 2014.

[Mumcu and Saglam, 2010] Ayse Mumcu and Ismail
Saglam. Stable one-to-one matchings with externalities.
Mathematical Social Sciences, 2010.

[Ortega, 2020] Josué Ortega. Multi-unit assignment under
dichotomous preferences. Mathematical Social Sciences,
2020.

[Perrault et al., 2016] Andrew Perrault, Joanna Drummond,
and Fahiem Bacchus. Strategy-proofness in the stable
matching problem with couples. In AAMAS, 2016.

[Pycia, 2012] Marek Pycia. Stability and preference align-
ment in matching and coalition formation. Econometrica,
2012.

[Rastegari et al., 2016] Baharak Rastegari, Paul Goldberg,
and David F. Manlove. Preference elicitation in match-
ing markets via interviews: A study of offline benchmarks
(extended abstract). In AAMAS, 2016.

[Roth, 2002] Alvin E Roth. The economist as engineer:
Game theory, experimentation, and computation as tools
for design economics. Econometrica, 2002.

[Roth, 2018] Alvin E Roth. Marketplaces, markets, and mar-
ket design. AER, 2018.

[Sandholm and Boutilier, 2006] Tuomas Sandholm and
Craig Boutilier. Preference elicitation in combinatorial
auctions. Combinatorial Auctions, 2006.

[Sasaki and Toda, 1996] Hiroo Sasaki and Manabu Toda.
Two-sided matching problems with externalities. J. Econ.
Theory, 1996.

[Sethuraman et al., 2006] Jay Sethuraman, Chung-Piaw Teo,
and Liwen Qian. Many-to-one stable matching: geometry
and fairness. Math. Oper. Res., 2006.

[Shen et al., 2020] Weiran Shen, Pingzhong Tang, Xun
Wang, Yadong Xu, and Xiwang Yang. Learning to design
coupons in online advertising markets. In AAMAS, 2020.

[Tziavelis et al., 2019] Nikolaos Tziavelis, loannis Gian-
nakopoulos, Katerina Doka, Nectarios Koziris, and Pana-
giotis Karras. Equitable stable matchings in quadratic
time. In NeurIPS, 2019.

[Tziavelis et al., 2020] Nikolaos Tziavelis, Ioannis Gian-
nakopoulos, Rune Quist Johansen, Katerina Doka, Nec-
tarios Koziris, and Panagiotis Karras. Fair procedures for
fair stable marriage outcomes. In AAAI 2020.

Appendix

In the Appendix, we provide additional problem motivation,
proofs, pseudocode, and survey details that were omitted in
the body of the paper.

A Problem Motivation (§1)

In our introduction, we mention multiple motivating exam-
ples for our model. In this section, we discuss them and their
application to the model in further details.

Academic Faculty Interview Market Our main motivat-
ing example is the academic faculty interview marketplace.
Here, graduating students applying for faculty positions are
affiliated with their alma mater. Both students and univer-
sities indicate which agents on the other side of the market
they are interested in interviewing with along with an inter-
view slot capacity. Additionally, for each affiliate-university
pair, the university indicates which universities they would
like their affiliate to interview with, either for their own pres-
tige or the well-being of the student. Note that this does not
place a restriction on a student’s matches based on their uni-
versity’s interest, but rather models another factor that may
influence a university’s preference over a complete interview
matching.

The interview market, as opposed to the hiring market
which motivated the model proposed by Dooley and Dick-
erson [2020], is more appropriate in this setting for two main
reasons. First, dichotomous preferences seem more appro-
priate for interview matching, as interviews are intended to
gauge interest on both sides, and thus the preference profile
need not be refined. In faculty hiring, on the other hand, a
preference profile maybe be inherently more complex than
binary approval/disapproval. Second, the interview market
lends itself to many-to-many matches, as both students and
universities may desire multiple interviews, whereas the hir-
ing market only generalizes to many-to-one matches, as stu-
dents are only hired by one university. This simply better ex-
presses the power of our solution which addresses the general
many-to-many setting.

Playdate Matching Another application is playdate match-
ing. Consider a group of parents P, each with an associated
child, denoted by the set C. Obviously, the affiliations are
defined by parent-child relations, i.e., aff(p) is the child of
p € P. These also denote either side of the market. A match
between a parent p € P and a child ¢ € C indicates that
the child ¢ will go to p’s house to have a playdate with child
aff(p). This can be a many-to-many matching, where quo-
tas are how many playdates a child would like to go on and
how many children a parent would like to host. Children can
dis/approve of parents according to their interest in having a
playdate with that child and/or going to their house, and par-
ents dis/approve of children based off their interest in hosting
the child and their own child’s interest in the playdate. Ad-
ditionally, parents’ preferences over their child matches may
come from whether or not the parent can drive a child to an-
other parents’ house or other related reasons. Instability indi-
cates that a parent and child would forgo playdates to form a
new playdate. Thus this is a nice application for the DASM
Problem.

Study Abroad In the study abroad matching problem, we
have a two-sided market consisting of current students inter-
ested in studying abroad and universities. Students are affili-
ated with the schools they attend, and they express interest or
non-interest in other schools to go to study abroad. Schools
express approval or non-approval for students that attend their
program, as well as approval or non-approval of what study
abroad programs they prefer to offer their own students. This
also can be nicely modeled in terms of the DASM Problem,
where a stable solution ensures a university would never alter
their accepted students in favor of other willing students in
order to improve their valuation of the entire matching.

Student Project Allocation Our next motivating example
is the student project allocation market, where we use a
quite similar (yet not identical) process to that of Manlove
et al. [Manlove et al., 2022]. In this problem, there is a set
of students S, a set of lecturers £, and a set of projects P.
Projects are proposed by lecturers, which defines a natural
affiliation. Students express a preference over projects and
lecturers express a preference over students for their affili-
ated projects. Note that we use approval-based preferences,
whereas Manlove et al. use a combination of approval-based
and ranked preferences. We believe it is reasonable in this
application to elicit entirely dichotomous preferences.

To model this in the DASM Problem, let the sides of the
market be P and S N L respectively. Note that we put P
on the first side of the market because is the side that will
be affiliated with agents on the other side of the market. Let
aff(s) = 0 for all s € S and aff(l) = P, where P, is the
set of proposed projects by { € L. This forms a disjoint
cover over P. As projects do not have preferences over stu-
dents, we simply set project preferences to approve of all stu-
dents. The quota of a project is the number of students that
may work on the project. Similarly, since faculty are not as-
signed to projects (this is a slight deviation from Manlove et
al., where we assume lecturers are automatically assigned to
all proposed projects), they must have zero quota. However,
they exhibit preferences over the matches of their proposed
projects. Finally, students also exhibit preferences over their
matches with projects, and may have varying quotas depend-
ing on how many projects they are allowed to match with.

In this example, however, we note that stability is not en-
tirely relevant. As lecturers are the only individuals with af-
filiations, and they have no quota, affiliations will actually not
impact the stability of a matching. However, it does impact
the overall value of a matching. Therefore, it may be interest-
ing to explore other concepts of fairness in this model in light
of this application.

Dog Breeding Dog breeding is another problem that can
be modeled using the DASM Problem. In the dog breeding
market, dog breeders have male and female dogs they would
like to breed. In this application, we make the light simpli-
fying assumption that the breeder who owns the female dog
receives the offspring and the breeder who owns the male dog
sells their services. To that end, the two sides of our market
are as follows: in the first side, we have the male dogs, and
on the second side, we have breeders, which encapsulates all
female dogs they own. Clearly, the male dogs from a breeder
are affiliated with that breeder.

Since male dogs do not have preferences, we simply as-
sume male dogs approve of all possible matches (though they
have some realistic capacity for matches). Breeders express
their interest in male dogs they would like to purchase the ser-
vices of (i.e., interest in their own matches) based off of the
perceived breeding potential. They also express their prefer-
ences over breeders they would like their male dogs to service
(i.e., interest in their affiliates’ matches) based off of offered
money, distance, etc.

Like the last example, stability in this model of dog breed-
ing is not entirely compelling as dogs do not have agency to
cheat as we describe in this model. However, as before, other
notions of fairness may be of interest with respect to this ap-
plication.

B Model Definition Proofs (§2)

Here we prove the three propositions presented in Section 2.
We start with Proposition 1, which shows that a swapped
matching of a matching with respect to a potential blocking
tuple is still a matching. The proof is short and direct.

Proof of Proposition 1. We know 1/ is a valid matching if no
edge is matched across twice and no capacities are exceeded.
The only formed matches are: (a, e) and possibly (a’, ") and
(a”,€’). We know (a, €) is unique as we require e ¢ p(a).
Additionally, e’ and a” are, by definition, not in p(a’) and
u(e’) respectively. Therefore, since p could not have dupli-
cated matches, neither could /. Both a and e lose and gain
a match, and both ¢’ and o’ lose a match and possibly gain
one match. Thus, their match sizes could not have increased,
so they must not exceed their capacities. Finally, a” and e”
might gain a match. This only happens if they are in [V, ;:‘ and

N, f respectively, meaning they did not meet their quotas in
. Thus they could not exceed their quotas either. O

Next, in Proposition 2, we show that we only have to
consider potential blocking tuples in order to determine if a
matching is stable. Furthermore, we can equate stability with
the non-existence of a potential blocking tuple with specific
preference profiles.

For intuition about why we can ignore some blocking tu-
ples, we briefly show that there is a limit on the effect cheaters
can have on the rest of the matching. For instance, assume
a € Aand e € E would like to cheat. In this instance, they
can only break off matches to one ¢’ € pu(a) and @’ € u(e)
respectively. Thus, as a result of the cheating, only ¢’ and a’
could have new unused capacity. Then ¢’ and o’ may decide
to match with each other, or they may decide to match with
other individuals o’ € A\ p(e’) and e’ € E'\ p(a’) with un-
matched capacity respectively. For any other agents involved
in the blocking tuple 7, their ability to match with each other
is not a result of a and e cheating.

Consider, for instance, some a* € ANT \ {a,a’,a"}
and e* € ENT \ {e,e,e’} that are in the tuple but not
the aforementioned six affected agents. If (a*, e*) is formed
during the second step of the process from Definition 3, then
that’s simply because the two had additional capacity and pre-
ferred to match with each other. This is a valid notion of
instability, however, it can be more simply captured by the
tuple (a*, v, 7, e*,~,) (recall that ~y is the empty agent with

& = {7}), where all that happens is that a* and e* form a
match.

Proof of Proposition 2. Consider a matching p for an in-
stance of the DASM Problem and let 7 = (aq,...,ax) be
the blocking tuple for p. We show that if 7 is not a poten-
tial blocking tuple, then it implies that there is some tuple 77
with size |T1| < T is also a blocking tuple for 4. This would
then prove the first part of our results, that u is unstable if and
only if there exists a blocking tuple that is a potential blocking
tuple.

Since T is not a potential blocking tuple, there is at least
one agent ¢* € 7 who is not a cheater, is not cheated on, and
does not match with an agent that is a cheater or cheated on.
To see why, we consider multiple cases. First, if there are no
cheaters, obviously no agents are cheaters or are cheated on,
and therefore some agent in 7 must satisfy this.

Second, if there is one cheater, say without loss of gener-
ality the cheater is a € A who cheats on ¢’ € E, assume that
all matches have at least one agent who is a cheater or who is
cheated on. Since there is only one cheater (a) and one who is
cheated on (e’), there can only be at most two such matches:
(a,e) for some e € E and (¢’,a”) for some o’ € A. If
(a, €) is a match, then since it must be new to be involved in
the blocking tuple, then e € E'\ u(a). Similarly, if (¢/,a’)
is a match, o’ € A\ u(F). Additionally, since a’’ was not
involved in cheating, it can only match with ¢’ if it had un-
matched quota. Therefore o/ € N lf‘ \ p(e’). There can be
no other agents in 7 who form matches. Thus either there is
some agent a* € 7 who does not match, and thus a* can be
removed and we still have a smaller blocking tuple 77 (i.e., a*
does not affect the final matching p since it does nothing),
or T = (a,a”,e,¢). In the latter case, T satisfies the condi-
tions for a potential blocking tuple with a’, ¢ € £, which is
a contradiction. Note that the argument is very similar if the
cheater is e € E who cheats on some o’ € A.

Finally, we consider when there are two cheaters. By a
similar argument as before, the only matches that involve a
cheater or one who is cheated on are the match (a, ¢) (which
is required to be made in this case) for cheaters a € A and
e € E\ u(a), the match (o', e”) where o’ € pu(e) was cheated
onande” € E\u(a'), and the match (a”, e’) where ¢’ € u(a)
was cheated on and a” € A\ p(e’). Additionally, for ¢” and
a’ to be able to match with a’ and e’ respectively, they must
have had unmatched quota after cheating occured. Therefore,
they were either cheated on or had unmatched quota to start,
meaning ¢’ € (Nf U{e’'}) \ u(e’) and o’ € (N;4 u{e'}\
w(a’). Since T is not a potential blocking tuple, there must be
some other agent a* € T \ {a,a’,a”, e, e',e"”}. Otherwise,
we use the same argument before to show we can create a
smaller tuple 7; that is a blocking tuple for y. This concludes
the first part of the proof.

At this point, we can assume 7 is a potential blocking tu-
ple that is also a blocking tuple. Consider y’, the swapped
matching of p with respect to 7. Note that in the processed
described in Definition 3, 1’ is equivalent to the final match-
ing. It is not hard to check that each of the six preference con-
ditions in Proposition 2 correspond to the final conditions for
the blocking tuple from Definition 3. For instance, u <, 1
and p <. p' simply means a and e prefer the final matching

to the starting matching. When «’ is an agent (i.e., a ¢ &),
w<a pU{(a’,e")} means a’ prefers to match with e”” over
not in the context of the final matching. This is necessar-
ily true by Definition 3, and the same argument holds for
a”, €, and e”. This concludes the forward direction of the
proof. The reverse direction of the proof follows by simply
observing that a blocking tuple with these preferences is nec-
essarily a blocking tuple, so if one exists, then y is clearly
unstable. O

Finally, in the reserved maximal b-matching problem, it
is fairly straightforward to show that the proposed Greedy
algorithm achieves a maximal matching in O(|E|) time on
edge set E.

Proof of Proposition 3. Let G = (V,E,q,S,r) be an in-
stance of the reserved maximal b-matching problem and let
be the matching returned by Greedy. At the start of Greedy,
we clearly have a reserved b-matching. For every edge e,
Greedy only adds e if it does not break that the matching
is a reserved b-matching. Thus it must always be a reserved
b-matching throughout the algorithm.

Now we show p is maximal. Consider some edge e =
(u,v) ¢ u, and let pi. be the matching at the time e was con-
sidered. Since e was not added, its addition to p. would make
it no longer a reserved b-matching. Therefore, it must break
a quota or reservation constraint. Say it breaks a quota con-
straint for v (wihtout loss of generality). Then | (v)| = q(v)
since . is a reserved b-matching but adding e would break
v’s quota. Since edges are only added throughout Greedy,
|u(v)] > |pe(v)] = ¢q(v), and since p is a reserved b-
matching, it must be that |u(v)| = ¢(v). Therefore, adding e
to 1 would make it no longer a reserved b-matching.

Otherwise, adding e to 1. would have broken a reservation
constraint for some S € S. Adding e to p., then, must fill
the quota of at least one of .S’s vertices. It clearly then must
do this for one of its endpoints. If this happens to only one
endpoint v € S (without loss of generality), then adding e to
e makes v meet its quota. Therefore |u.(v)| = q(v) — 1.
As before, [u(v)] > |p(v)] = q(v) — L so |u(v)] €
{q(v),q(v) — 1}. Additionally, since S’s reservation was
broken by adding e which only affected v’s quota in .S, then
|S| —r(S) vertices in S” C S\ {v} (with |S'| = |S| —r(S))
must have their quotas met in yi.. Since edges aren’t removed,
this is true in p as well. Since v ¢ S’, v can’t have met
its quota in u, else p would violate S’s reservation. Thus
|e(v)] = q(v) — 1. Adding e to p, then, would make v meet
its quota, thus breaking the reservation for S. Thus, e could
not be added to p. In the final case, we consider if both w
and v meet their quotas by adding e to p.. The analysis is
essentially the same. This concludes the proof. O

C Survey Methods and Results (§3)

In this section, we provide real-world motivation for our val-
uation function in the DASM Problem. To do this, we con-
ducted an online survey that presented the DASM Problem
problems to participants. We find that the DASM Problem
induces behavior that shows an employer (in our survey, a
university) may be willing to trade the quality of their match

for that of their affiliate. We also find motivation for two polar
versions of our valuation function: when A = 1 and A = e.

Our survey protocol can be found in the Appendix C and
follows the work of Dooley and Dickerson [2020]. We devel-
oped the survey protocol to answer our main research ques-
tion: Do real-world participants follow the weighted valua-
tion function and for which weights?

We hypothesize that individuals do follow our function, as
we believe it is one of the most rational models for human
behavior in the DASM setting. To explore this, we compute
how often participants admit our tested weighted valuation
function, considering both when A = 1 and A = ¢, when
presented with a specific DASM setting.

We conducted the survey through a crowdsourcing plat-
form, Cint, which connected us with English-speaking partic-
ipants located in the United States. Our institution’s IRB re-
viewed our survey structure and data-collection methods and
determined it exempt and did not necessitate an IRB approval.
After screening for setting comprehension, 203 participants
completed the survey. Ten of those completed the survey too
quickly (less than five minutes) and we excluded those re-
sponses. Each of the remaining 193 responses are included in
our analysis below and we paid Cint $3.05 for their time. The
median response time of these 193 responses was 23 minutes.

C.1 Survey Design

The participants were first introduced to the standard match-
ing problem with three agents on each side of the market.
They were primed to identify themselves as one of the uni-
versities. There was a matching-related test designed to filter
out participants who were not paying attention to the content
of the survey. The test consisted of three text-based questions
in which the participant matched the text to a visual depiction
of the corresponding matching scenario based off a dichoto-
mous preference profile. Next, the concept of affiliates was
introduced in the same matching setting with the five possible
matches that involved their university and their affiliate. We
then randomly primed the participant to believe that it was
in their best interest to prioritize the match of their affiliate*.
Finally, we presented the participant with eight dichotomous
scenarios and asked them to express their full preference over
the possible matchings. These eight scenarios are fully de-
tailed in the protocol in Appendix C.

C.2 Results

The main survey results are depicted in Table 1. To test if
participants agreed with the valuation function, we first cal-
culated the probability of uniform random responses result-
ing in a preference profile that follows the function for both
parameters. We then compared this to the observed probabil-
ity and found that with p = 0.05 on a right-tailed alternative
hypothesis of a binomial test that the increase in observed ad-
herence to the valuation function for both parameterizations
is significant.

Additionally, of all participants, the median number of sce-
narios where they completely adhered to the A = 1 valuation

“Random priming, while not a main focus of our experiment,
tests how differences in beliefs about one’s own gain from the match
of an affiliate would lead to different matching strategies

function is 2. The same is true for the A = € valuation func-
tion. When \ = 1, the median values between the primed and
unprimed groups individually are 3 and 2 respectively. When
A = ¢, the medians are 2 and 1 respectively.

Furthermore, 157 of the participants used the valuation
function with A = € at least once and 164 used A = 1 at least
once (excluding scenario 5). These results indicate that par-
ticipants generally adhered to both valuation functions, but
did not do so consistently throughout the survey. However,
since their adherence was significantly higher than random,
this suggests that there is structure in how the participants
chose to adhere to the valuation functions. We pose for fu-
ture research to design a survey instrument which investigates
why a participant would choose whether or not to adhere to a
particular valuation function.

We also observe that there is light evidence that our prim-
ing method was effective in inducing participants to follow
the valuation function. Since this was not one of our central
research questions with the survey (does our priming method
induce more deference to the affiliates’ match) we only men-
tion that with further work, we could explore exactly how to
prime the participants better. The purpose in performing the
priming was to simulate the behavior of an admission fac-
ulty member. While this population is challenging to survey,
our survey instrument does suggest that when considering the
self-interest in your affiliate candidate’s match, an agent may
be more likely to follow either of the valuation function pa-
rameterizations.

C.3 Complete Protocol

This section includes the entire protocol used for the survey
in Section 3
Faculty Hiring Program

The design of this survey is aimed at understanding how
you make decisions with different competing priorities. You
will be exploring this concept in the setting of a hiring mar-
ket for new faculty professors. The Survey will have two
parts: (1) familiarization with faculty hiring, and (2) answer-
ing questions about your preferences. We begin with the fa-
miliarization part now.

Consider a hiring market such as this one with three appli-
cants (Ryan, Alex, and Taylor), and three universities (Bear
Mountain, Littlewood, and West Shores).

Imagine that you are Bear Mountain University, and you
performed an evaluation of the applicants. You decided that
you liked Alex more than you liked Taylor, and you liked
Taylor more than you liked Ryan.

Top Tier Candidates Middle Tier Candidates
Alex Taylor

Bottom Tier Candidates
Ryan

You could depict that preference as:

Alex Taylor
Interested Not Interested

Ryan
Interested

Your preference over your possible student matches could
then look like:
First Choice
Ryan () BMU
o O O
Tayl

Second Choice

Ry (S—) BMU
Third Choice

yan [7/) BMU
T (3 Owst

But since you like Ryan too, you could also have the pref-
erences:
First Choice
Ry (—) BMU

Second Choice
Rya j;})wu
Alex <)

Third Choice

Lyar [7/) BMU
Taylor () wst

N

To test your comprehension of the previous setting, can
you now do the matchings yourself? These are intuitive and
should be easy to complete.

Assume you are Bear Mountain University. Assume this
time that after you review the applicants, you are interested in
being matched with the candidates as follows:

Alex Taylor
Interested Not Interested

Ryan
Interested

Then what is your ranking of the following options?
Assuming you believe the above, rank these outcomes
from your most preferred (1) to your least preferred (3).

C DR (O "
- ;})BML Byan (F—@)BMU Ry () BMU
cdle v () Qu e (O /()
Alex | 7] .
— —_) - YWSU Tavler (- () wst

Taylor L . L WS)

Assume you are Bear Mountain University. Assume this
time that after you review the applicants, you place them in
these tiers:

Alex Taylor
Not Interested Not Interested

Then what is your ranking of the following options?

Ryan
Interested

Assuming you believe the above, rank these outcomes
from your most preferred (1) to your least preferred (3).

- :;/@“ML Ry (—@)BMU Ry () BMU
g (7 O

Tayh L) WS aylor w L WS Taylor)

Assume you are Bear Mountain University. Assume this
time that after you review the applicants, you place them in
these tiers:

Alex
Not Interested

Taylor Ryan
Interested Not Interested

Then what is your ranking of the following options?

Assuming you believe the above, rank these outcomes
from your most preferred (1) to your least preferred (3).

e . 3 .

. ‘)‘/@umu Ry (S—) BMU () BMU
ex @) U

e) ws

Alex \J
e () (Ows aor () (OWsU Tayer ()

Awesome! Now onto the second part of the Survey. Since
you understand the basic faculty hiring setting, let us intro-
duce another layer of complexity.

In faculty hiring, the applicants are affiliated with a univer-
sity based off where they earned their PhD. What this means
is that universities also care about where their student gets a
job.

Assume that you are Bear Mountain University and
your student is Ryan. You then have the following five op-
tions of matchings:

You are matched with Ryan.

tyan (—) BMU
Tay

You are matched with Alex; Ryan is matched with Little-
wood University.

Ryan (§><% BMU
e
aex () LU

You are matched with Taylor; Ryan is matched with Little-
wood University.

Ryan (3 BMU
der () L
Tyor (4 ()ws

N

You are matched with Alex; Ryan is matched with West
Shores University.

BMU

WsU

You are matched with Taylor; Ryan is matched with West
Shores University.

BMU

WsU

In the remainder of the survey, we will ask you to express
your preferences over these five options under different set-
tings of which applicants you like best and what you think of
the different universities.

Randomly assigned either of the two following prompts:

For the remainder of the survey, you will get to decide how
you would like to balance your own interest in being matched
with the best candidates possible, and where Ryan should be
matched. There is no right answer — it is up to you about how
you balance these two things.

or

In faculty hiring, it is common to want your affiliate to be
placed at a good university. This is often because you as a
university will be perceived as a better university if your stu-
dents get jobs at top tier schools.

So, keep in mind if Ryan is placed at a university you are
interested in, then your university will be viewed better and
could hire better candidates in the future. While you want
Ryan to be matched with a good school, you must balance this
priority with your competing priority that you want a good
candidate. There is no right answer — it is up to you about
how you balance these two things.

We will ask you to express your preferences to 8 scenarios.
When you are ready, please continue to Part 2.

Display this question 8 times with the interests as expressed
in the enumerated list in Section 3.
Assume that you are Bear Mountain University and Ryan is
your student.

Assume that you have evaluated the candidates and you
decide that you are interested in hiring Alex, but you are not
interested in hiring Ryan and Taylor.

Alex Taylor
Interested Not Interested

Ryan (your student)
Not Interested

Assume that you have the following beliefs about the schools,
based off of the school’s ranking. You are interested in match-
ing Ryan with Littlewood (LU) and your school (BMU), but
you are not interested in Ryan being matched with West
Shores (WSU).

LU WSU
Interested Not Interested

BMU (your university)
Interested

Assuming you believe the above, rank these outcomes
from your most preferred (1) to your least preferred (5).

Ry (F—E)BMU Ry () BMU Ry () BMU
sex () o Al (7 LU sex () LU

BMU

WSU Tavler WsuU

Can you describe the procedure you used to rank these?
Why did you use this procedure?

D Main Algorithm Proofs and Pseudocode
(84)

In this section, we present the proofs for our theoretical
work. This includes proofs regarding the reserved maximal b-
matching problem, PriorityMatch and SmartPriorityMatch.
At the end, we present the pseudocode for the algorithm.

D.1 The Reserved Maximal b-Matching Problem

We start by proposing a simple and efficien algorithm for
solving the reserved maximal b-matching problem. This
shows that SmartPriorityMatch can be implemented effi-
ciently.

Let Greedy be a greedy algorithm for the reserved maxi-
mal b-matching problem, where we consider edges in an ar-
bitrary order and greedily add them to the matching as long
as they don’t break any reservation or capacity constraints.

Proposition 3. Greedy solves reserved maximal b-matching
in O(|E|) time for E edges.

Proof. Let G = (V, E,q,S,) be an instance of the reserved
maximal b-matching problem and let p be the matching re-
turned by Greedy. At the start of Greedy, we clearly have a
reserved b-matching. For every edge e, Greedy only adds e if
it does not break that the matching is a reserved b-matching.
Thus it must always be a reserved b-matching throughout the
algorithm.

Now we show g is maximal. Consider some edge e =
(u,v) ¢ p, and let u, be the matching at the time e was con-
sidered. Since e was not added, its addition to ;.. would make
it no longer a reserved b-matching. Therefore, it must break
a quota or reservation constraint. Say it breaks a quota con-
straint for v (wihtout loss of generality). Then | (v)| = ¢(v)
since e is a reserved b-matching but adding e would break
v’s quota. Since edges are only added throughout Greedy,
|u(v)] > |pe(v)] = ¢q(v), and since p is a reserved b-
matching, it must be that |u(v)| = ¢(v). Therefore, adding e
to u would make it no longer a reserved b-matching.

Otherwise, adding e to u. would have broken a reservation
constraint for some S € S. Adding e to p., then, must fill
the quota of at least one of S’s vertices. It clearly then must
do this for one of its endpoints. If this happens to only one
endpoint v € S (without loss of generality), then adding e to
e makes v meet its quota. Therefore |u.(v)| = ¢(v) — 1.
As before, [u(v)] > |ue(v)] = g(v) — L so |u(v)| €
{q(v),q(v) — 1}. Additionally, since S’s reservation was
broken by adding e which only affected v’s quota in .S, then
|S] — r(S) vertices in " C S\ {v} (with |[S’| = |S| —r(S5))
must have their quotas met in .. Since edges aren’t removed,
this is true in p as well. Since v ¢ S’, v can’t have met
its quota in u, else p would violate S’s reservation. Thus
|u(v)| = ¢(v) — 1. Adding e to u, then, would make v meet
its quota, thus breaking the reservation for S. Thus, e could
not be added to u. In the final case, we consider if both
and v meet their quotas by adding e to p.. The analysis is
essentially the same. This concludes the proof. O

D.2 PriorityMatch Proofs

In this section, we address all proofs regarding Priority-
Match. First, we introduce a new lemma that will simply
show a useful property that we use throughout these proof.
The high level idea is that if matching p’ is a swapped match-
ing of i, agents only care about the part of their matches (and
possibly their affiliate’s matches) that change to decide which
matching they like better. Specifically, we give conditions for
ana € Aand e € E where a ¢ p(e) buta € p/(e) would not
strongly prefer the new match to the old one. If this can be
shown for all possible ways to do a pairwise swap to match a
and e, then they cannot form a blocking tuple. This is crucial
to our proof.

Lemma 4. Consider the DASM Problem. Let T =
(a,a’,a"” e, €' €e") be a potential blocking tuple for a match-
ing u, and 1’ be the swapped matching of p with respect fo
T. Then both of the following hold:

1. Ifpr,(e) < pr,(€), then a cannot prefer 11 to pu.

2. Let 1,, 1., and 1, be the respective indicators that
a,a’, and o' are in aff(e). Let J,» o be the indicator
that o' # o'. If

pre(a’) + ALupré (€) + Marpre (e)
> pré(a) + ALupre(e) + Murpre (<)
+)\Ia// ‘]a”,a’ pr‘el” (6/)7

then e cannot prefer 1 to .

Proof. For 1:
valy (i) =pr(e) + > pro(e”)
erep/(a)\e
<pry(€') + pra(e”) (D
eep(a)\e’
=val,(u),

where line 1 comes from the fact that the two summations
sum over the same matches of a, and pr,(e) < pr,(e') (as
given). Thus, a does not strongly prefer p’ to p. This com-
pletes the first part of the Lemma. We will now show 2, for

bi,..., b‘aff(a)l S aff(a):

> pri(a”)

a*ep’(e)\{a}

vale (') =pre(a) +

+ A, | pre(e) + pre(e”)
e*ep’(a)\{e}
Y P CO T W O
e*ep/(a)\{e’}
+)\Ia”Ja”,a’ pr:// (6/) + Z pl’g” (6*)

erep @)\ {e'}
IS ST ()
a*€aff(e)\{a,a’,a’} excp’(a*)

<pre(a)+) prifa”)
a*€p(e)\{a'}

+ M, | pré(e) + Z pr(e*)
erep(a)\{e'}

+ Mo [pr? (e) + Z pre’ (e*)
erep(a’)\{e}

+ /\Ia” a’a’ Z Przl(e*)

e*Epla’)

DYDY Yooeie) O

a*€aff(e)\{a,a’,a’’} e*xcu(a*)
=val. ()

where line 2 comes from the fact that all the summations are
over the same matches, and otherwise the terms we pull out
compose the provided inequality. When we pull out the sum-
mation for a”, note that this is only something we can pull
out if a” # a’, because otherwise we already pulled it out as
the o’ summation. This is why we multiply it by Jo» . O

We now introduce another useful lemma that implies that
in any blocking tuple with respect to the matching found by
PriorityMatch, a cannot be matched. Equivalently:

Lemma 5. Let p be the resulting matching from Pri-
orityMatch. Then any potential blocking tuple T =
(a,a’,a” e, e e") that blocks p must satisfy €', a” € € and
a,e" ¢€&.

Proof. Fix a blocking tuple 7 = (a,a’,a”,e,e’,e”). Let i/
be the swapped matching of i with respect to 7. Assume for
contradiction that ¢’ ¢ £. That means ¢’ € u(a) by the def-
inition of the blocking tuple. Notice that every edge (a*, e*)
in every subgraph in PriorityMatch satisfies pr,.(e*) = 1.
Since all matches are selected from these edge and (a,e’)
was matched by PriorityMatch, this implies pr,(e’) = 1. By
Lemma 4, a cannot prefer p’ to p. This contradicts that 7 is

a blocking tuple. This proves €’ € £. By the definition of the
blocking tuple, we then know a” € £.

Next, consider the case when o' € £ or ¢” € £. By
the definition of the potential blocking tuple, one implies the
other, thus a/,¢”” € £. This means a and e both are not
matched to capacity and they simply use this to match with
each other. Since each must have an interest in each other to
form a blocking tuple, (i.e., pr,(e) = 1 and pré(a) = 1 or
pré(e) = 1), that means (a, e) is an edge in one of the Pri-
orityMatch graphs. Since they never reached capacity, they
must have then matched during the maximal matching in that
graph. This contradicts that e ¢ u(a). O

Combining these two lemmas yields the following useful
lemma:

Lemma 6. Consider the DASM Problem. Let T =
(a,a’,a"” e, €' e") be a potential blocking tuple for a match-
ing p, and p' be the swapped matching of p with respect to

T. Let I, and I, be the respective indicators that a and a’
are in aff(e). If

pre(a’) + Mupre (e) > pre(a) + Aapré (e) + Marpre (¢"),
then e cannot prefer ' to p.

Proof. Let I, be the indicator that o’ € aff(a) and Jy o
be the indicator that a” # a’. By Lemma 5, I,» = 0 and
pré(e’) = 0 since ¢/,a” € E. The two following equations
hold:

pré(a’) + Ao pr? (e)
=pré(a’) + M pre(e’) + /\Iarprg/(e)7
pré(a) + Mapré(e) + M pr® (€")
=pre(a) + Mapré(e) + Mapré (¢") + Man Jor arpré (€).

Substituting these into each side for the second inequality in
Lemma 4 gives the desired result.

Note that this is a more useful version of the second in-
equality of Lemma 4. Since we will need a version of both
inequalities of Lemma 4, we will now canonically refer to
Lemma 4 to refer to its first inequality, and Lemma 6 for the
simpler version of the second inequality. We now prove the
lemma defining when PriorityMatch works.

Proof of Lemma 2. Obviously, as the quotas always reflect
the maximum remaining space any agent has for matches, this
creates a valid matching. We now show this is stable.

Consider p, the output of PriorityMatch. Assume that it
satisfies the preconditions of this lemma: for any potential
blocking tuple 7 = (a,a’,a”,e,e’,¢e”) such that a,a’ €
aff(e) and a prefers the swapped matching of with respect
to 7T, then:

pre(a) + Apre (e) = pré(a) + Apre(e) + Apre (¢”). (1)
By Lemma 5, we can ignore the ¢’ and a” parameters as

e',a” € &, so they are not involved in the blocking tuple.
Thus our tuple is effectively reduced to 7 = (a,d’,e,e”).

Assume for contradiction that 7 is a blocking tuple. Let u'
be the swapped matching of ;. with respect to 7. Note that
to use Inequality 1, it is sufficient to show that a, a’ € aff(e)
and ' >, p (i.e., the precondition of the lemma). The latter
is satisfied because we assume 7 is a blocking tuple. Ad-
ditionally, if we were to satisfy this, then I, = I, = 1,
which means pré(a’) + Apr? (e) = pré(a’) + M pr? (e)
and pre(a) + Apré(e) + Apre (") = pre(a) + Mopre(e) +
A, pr? (¢”). Plugging these into Inequality 1, we get:

pré(a’) + Mapr? (e) > pré(a) + Aupré(e) + A pre (€”),

This satisfies Lemma 6, which implies e cannot prefer u'
to p. Therefore, a and a’ cannot both be in aff(e) simultane-
ously.

Given that ’,a” € £ and o/, ¢’ ¢ £ by Lemma 5, it must
be the case, then, thata € N ;14 is simply filling unmet capac-
ity while e has met its capacity and is therefore dropping its
match with some a’ € A in order to match with a. Then a’
may or may not match with another employer (depending on
ife” € £ore” € E). We can then do a case by case analysis
based off the fact that ¢ and a’ cannot both be in aff(e) (note
that we say p; is the maximal matching found by Priority-
Match in G;):

1. If a € aff(e): Then I, = 1 and o’ ¢ aff(e) so I, = 0.
Since a’ ¢ aff(e), (a’,€) can only have been in Gj.
Since it was matched by PriorityMatch, it must have
been in G;. Therefore, pré(a’) = 1. Thus, on the left-
hand side of Lemma 6:

pré(a’) + Auprd (e) = 1
On the righthand side:

pré(a) + M,pré(e) +)\Ia/prg/(e”) = pré(a) + Apréi(e)

Since 7 is a blocking tuple by assumption, then by
Lemma 6 we must have pré(a) + Apr%(e) > 1. This can
only happen if pré(a) = pr%(e) = 1. Since Lemma 4
implies pr,(e) = 1, (e,a) must have been an edge in
Gy. Note also that since a’ ¢ aff(e), (e,a’) ¢ Go. Thus
a did not meet its quota in G (it never did) and e must
have had remaining quota after po. This contradicts the
maximality of f.

2. Else if o’ € aff(e): Then I,, = 1 and a ¢ aff(e) so
1, = 0. We start by simplifying the left and righthand
side of Lemma 6:

pré(a’) + Mopr? (e) = pré(a’) + Apr (e)

pré(a) + AMopré(e) + Ml pr‘;/ (€)= pré(a) +)\prg/(e”)

For T to be a blocking tuple, Lemma 6 implies:

pré(a’) + Aprd (e) < pre(a) + Apr? (")

The lefthand side can be 0, A\, 1, or 1 4+ A. It obviously
cannot be 0, else pré(a’) = pr® (e) = 0, so (e, a’) could

not have been an edge in any graph, and therefore could
not have been selected by PriorityMatch. It also cannot
be 1 4 A, since this is the maximum value of the right-
hand side.

Consider if pré(a’) +Apr® () € {1, \}. Then pr? (e) =
0 and pré(a’) = 1 or the reverse, so (e,a’) was an
edge in G, or i3 respectively, implying that e had un-
matched quota until at least either po or s occurred re-
spectively (i.e., it had unmatched quota in G5 or G3).
Since a always had unmatched quota during Priority-
Match, it cannot have appeared in any graph prior to
G4 or (G5 respectively, else PriorityMatch would have
matched e and a. In the first case, which occurs when
the lefthand side is 1, we know it cannot be the case that
pré(a) = pre(e) = 1 (since that would put (e,a’) in
Gy), thus the righthand side is bound above by 1 so the
inequality cannot hold. In the second case, which occurs
when the lefthand side is A, we know pré(a) = 0 (oth-
erwise (e, a’) would be in Gy or Gs), thus the righthand
side is bound above by A so the inequality cannot hold.
In either case, this is a contradiction.

3. Else: a,a’ ¢ aff(e), so I, = I, = 0. Again, we sim-
plify the left and righthand side of Lemma 6:

pre(a’) + Mapre (e) = pré(a’)

‘(a
pré(a) + AMapré(e) + My pr® (¢”) = pré(a)
Since PriorityMatch matched (e, a’), (e,a’) must have

been in some graph. For this to happen when o’ ¢
aff(e), it must be the case that pré(a’) = 1. Thus the
lefthand side becomes 1, which is also an upper bound
on the righthand side. Thus Lemma 6 holds, contradict-
ing that 7" is a potential blocking tuple.

Thus we have contradicted the possibility of having a block-
ing tuple, so our algorithm produces a stable marriage. [

Finally, we prove the weakness of PriorityMatch in the
prioritized setting.

Proof of Lemma 1. Consider a market with two agents on
each side: A = {aj,a2} and E = {ej,ea}. We let
aff(ey) = {a1,a2} and aff(e2) = 0. All possible prefer-
ences are set to one except prg?(ez) = 0, pre2(az) = 0, and
pr,,(e2) = 0. All quotas are 1. This means that GGy contains
edges (a1,e1) and (a9, e1). Since ey has a quota of 1, it must
select only one edge. In an arbitrary maximal matching, it
might select (a1, e1). All other graphs, at this point, will ei-
ther be empty, or only have edges with at least one 0-quota
endpoint. Thus as and e, will not be matched (though, we
could imagine just arbitrarily matching the rest at the end and
our argument will hold). However, note that ay likes e; and
dislikes e5. Similarly, e; would prefer for its affiliate a; to
be matched with e5 than as be matched with es. Clearly, as
and e; would prefer to be matched and allow a; and e5 to be
matched. O

D.3 SmartPriorityMatch Proofs

Next, we must show that SmartPriorityMatch is effectively
an implementation of PriorityMatch with a smarter algorithm

for the matchings. In order to do this, we need to show that
each matching could have been generated by PriorityMatch
given the prior matches. We show this one step at a time. Note
there are slight differences between the graphs for Priority-
Match and SmartPriorityMatch in the quotas of the graphs
and reservations. To clarify, for instance, the quotas in the
first graph for each algorithm, we use go for PriorityMatch
and ¢, for SmartPriorityMatch.

Lemma 7. Let Gy = (Voy, Eg, qo) be the first subgraph con-
sidered by PriorityMatch with capacities qq. Let g be the
matching SmartPriorityMatch finds on Go. Then pg is a
maximal matching on G.

Proof. Let G; = (Vi1,FE1,q1) be the second subgraph
considered by PriorityMatch. Before SmartPriorityMatch
finds g, it runs a reserved maximal matching p; on
(1, E1, 4}, S, 1), where ¢} are the capacities used by Smart-
PriorityMatch on V;, S are the affiliations, and r are the
reservations. Next, it finds some maximal matching 1y on
(Vo, Eo, q(,), where g, are the capacities used by SmartPri-
orityMatch on Vj. Since we use the same edge set and
q0(v)" = qo(v) — [(v)| < qo(v) for each v € V, g is
a valid matching on Gj.

Assume for contradiction there is some (e,a) € Ey \ o
such that ioU{(e, a)} is a valid matching in G. Consider the
topology of (Vp, Eg). It is a set of disjoint stars connecting
each employer (the center) to a subset of its affiliates. In G,
we then know e is going to match to some subset of its neigh-
borhood. Since the stars are all disjoint and all star leaves
have capacity at least one, then in a maximal matching, e can
and must match to any min(|No(e)[, go(e))-sized subset of
its neighbors during PriorityMatch.

Since o U {(e, a)} is a valid matching in G, that means
there is some set of matches S that involve e with (e,a) € S
such that z9(e) U.S is maximal (i.e., you cannot add any more
matches to e without breaking some agent’s quota). By our
argument from before, |ug(e) U S| = min(|No(e)|, go(e)),
therefore |po(e)| < min(|No(e)|,qgo(e)). Since the struc-
ture of graph (Vo, Ey, q}) is the same as (Vp, Eo, qo), o(€)
must abide by the same properties to be maximal, notably
that |jio] — min([NG(e)|, dj(e)) where Nj(e) = f{a €
No(e) : ¢i(a) > 0}. Therefore, min(|No(e)|,qo(e)) >
min(|Nj (e)], g (€)).

We start by considering |Nj(e)|. It is equivalent
to the number of agents a € Ny(e) who did not
match to their quota in p;. Since p; is a reserved
maximal b-matching with Ny(e) € S with reserva-
tion 7(No(e)) = min(|No(e)|,qo(e)), this number is

at least min(|No(e)|,qo(e)). Therefore, |Nj(e)| >
min(|No(e)|, qo(e)).

Thus for min(|No(e)l|,go(e)) > min(|Nj(e)|, g5(e)) to
hold, it must be the case that g)(e) < min(|No(e)l,qo(e)).
Note that we set gj(e) = qo(e) — |ui(e)]. Thus
qo(e) — |m(e)] < min(|No(e)], qo(e)), and so go(e) <

min(|No(e)|, go(e))+]|p1(e)|. Additionally, we know that we
set ¢1(e) = go(e) —min(|No(e)|, go(e)), and since |u1(e)] <
q1(e), we finally get that g (e) < go(e), which is a contradic-
tion.

Therefore, by contradiction, p¢ is a maximal matching on
Go. O

Given this, we now show that the second matching p;
could be equivalent between PriorityMatch and SmartPri-
orityMatch.

Lemma 8. Let Gy = (Vo, Ey, qo) and G = (Vl,El,ql) be
the first and second subgraphs considered by PriorityMatch
with capacities qo and q1. Assume an implementation of
PriorityMatch and SmartPriorityMatch result in the same
matching on Gy, call it po. If 1 is the matching found by
SmartPriorityMatch on G, then u is a maximal matching
on (G1.

Proof. Consider the same notation as introduced in Lemma 7
and fix some e € E. Recall in Lemma 7 we showed that
|o(e)] = min(|No(e)|,qo(e)). Therefore, e’s quota in G4
for PriorityMatch is ¢1(e) = qo(e) — |po(e)] = qole) —
min(|Ny(e)|, qo(e)). In SmartPriorityMatch, its quota is
¢, (e) = go — min(|No(e)|, qo(e)). Therefore, for all e € E,
ai(e) = ().

Now we will simply show that it is both a valid match-
ing and it is maximal in G;. Assume for contradiction it is
not a valid matching in G;. That means it must match some
a € A (as we know all e € F has the same capacity in both
graphs) above its capacity. Note that ¢} (a) = qo(a), and
q1(a) > ¢q(a) — 1, because since a could only be the leaf of
a star component in Gy, |po(a)| < 1. Therefore, a’s capac-
ity could only have been exceeded by 1, and this only occurs
when |uo(a)] = 1 and SmartPriorityMatch constructs i
such that |1 (a)| = ¢{(a). For this to happen, then, Smart-
PriorityMatch first matches a up to its capacity in u1. Then
a’s capacity is reduced to 0, so it cannot match a in pg. This
contradicts that |o(a)| = 1. Thus, 4 is a valid matching on
Gi.

Assume for contradiction that g; is not maximal. This
implies there is some (e,a) € Gp \ w1 where both e and
a are not matched up to their capacity in G;. Note, how-
ever, since p1 is maximal according to the reservation, either
e is matched to capacity, a is matched to capacity, or a is
reserved. If e is matched to capacity in the reserved match-
ing, then it must also be matched to capacity in G since its
capacity is the same in both. This is a contradiction. Oth-
erwise, a is matched to capacity in the reserved matching or
it is reserved. If a is matched to capacity, notice that since
q1(a) = qo(a), thus |p;(a)| = qo(a) > g1(a). Thus, a must
be (at least) matched to capacity in ;. Finally, we consider
when a is reserved. Let e = aff '(a). For a to have re-
maining capacity and a remaining unmatched neighbor with
capacity and be forced to not match, it could have only had
1 remaining capacity (¢f(a) — |1(a)] = 1) and there must
have been exactly r(Ny(e)) = min(|Ny(e)|,qo(e)) agents
in Ny(e) that were not matched to capacity by p;. Since
|o(e)| = min(|No(e)|, go(e)) and all other a’ € Ny(e) must
have had ¢)(a’) = 0, these agents must precisely make up
po(e). Thus, [ug(a)| = 1. Therefore, [uo(a)| + |p1(a)| =
1+ ¢i(a) — 1 = gi(a) = go(a). Thus, in PriorityMatch, a
has met its capacity in G;. This is a contradiction

Thus by contradiction, y; is maximal on G;. O

Now we can immediately prove Lemma 3.

Proof of Lemma 3. Simply combine Lemmas 7 and 8, and
note that after po and p; are found, SmartPriorityMatch

acts identically to PriorityMatch. This is sufficient to show
SmartPriorityMatch is a valid implementation of Priority-
Match. O

Now we must prove SMARTPRIORITYMATCH exhibits ad-
ditional properties to PRIORITY MATCH. We start by showing
it satisfies the preconditions for Lemma 2.

Lemma 9. Let y be the matching obtained by SmartPri-
orityMatch. Consider a potential blocking tuple T =
(a,a',a" e e e") such that a,a’ € aff(e). Let ' be the
swapped matching of p with respect to T. Then if a prefers
' to p:

pré(a’)+Apre (') +Aprd (€) > pré(a)+Apre(e)+Apre ().

Proof. For the beginning of the proof, we will be viewing the
order of events with respect to PriorityMatch. To that end,
o was formed first, then g7 and the rest.

Fix our tuple and matchings i and p’ and assume a,a’ €
aff(e) and a prefers p’ to p. Since a prefers ' to u1, we know
by Lemma 4 that pr,(e) > pr,(e’), which means pr,(e) = 1
and pr,(e’) = 0. Since a cannot match to something it does
not like in SmartPriorityMatch, it must be the case that ¢’ €
£ (and thus a”’ € &), and so a never matched to its quota.

Since o/ € aff(e), it must exist in the tuple. By the po-
tential blocking tuple definition, (a’,e¢) € p. Thus it must
exist in some graph. Since o/ € aff(e), it must have been
Go, Go, or Gs. If (e, a) existed in a graph G, since they did
not match but a never reached its capacity, that means e must
have reached its capacity in or before y; Thus, (a’, €) must
have appeared at latest in graph G;. It is not hard to see since
A < 1 that this implies that:

pré(a’) + Aprd (e) > pre(a) + Apre(e)

Thus, to prove the lemma, it is sufficient to show that
pr’ (¢”) = 0. Assume for contradiction it is 1. For this to
be true, ¢’ ¢ £. Additionally, by the definition of a blocking
tuple, (a’,e"”) ¢ u, pr,. (") = 1, and (since o’ ¢ aff(e”)
because it is in aff(¢)) pr®,(a’) = 1. Therefore, (a’,¢") ap-
peared in G1. For them to not match, that means a’ must not
have quota after (G1, so all its matches must have been in G
and G;. Therefore (a’,) must have occurred in Gy.

We will now view matchings in the order that occurs in
SmartPriorityMatch, so 11 occurs first, then 1o and the rest.
Recall from Lemma 7 that |uo(e)| = min(|No(e)|,go(e)) =
r(No(e)). Therefore, the set of agents 1o (e) must have not
been matched to quota when p; was made (before o was
made). Thus, uo(e) is sufficient to satisfy the reservation on
Ny (e) for the matching p; (e). Since (a, e) was not matched,
a ¢ po(e) even though (a,e) € Gy, meaning a € Ny(e).
Additionally, a was never matched to capacity. Therefore,
there are at least 7(Ng(e)) + 1 agents in Ny(e) that did not
meet their capacity in u;. Additionally, since |uo(a’)| = 1,
|1 (a)| < qo(a’) — 1. Since py occurred first and the reser-
vation constraint had not been met and ¢” had capacity (since
it never matched to capacity), (a’, ¢”’) would have matched in
p1. This is a contradiction. This concludes our proof. U

Now we proceed with Theorem 1.

Proof of Theorem 1. Lemma 3 shows that SmartPriority-
Match is a specific implementation of PriorityMatch. Ad-
ditionally, Lemmas 9 shows that SmartPriorityMatch satis-
fies the preconditions of Lemma 2. Therefore, by Lemma 2,
SmartPriorityMatch finds a stable matching. O

D.4 SmartPriorityMatch Pseudocode

Here we present the pseudocode for SmartPriorityMatch.
This can be seen in Algorithm 1.

Algorithm 1 SmartPriorityMatch

Input: Sets A and E of agents, affiliate function aff : ¢ —
P(A), quota function ¢ : AU E — N, preference func-
tions Va € Apr, : E — {0,1},Ve € Epré : A —
{0,1}, Ve € E,a € aff(e) pr® : E — {0,1}, and a
string val to designate the valuation function

Output: A stable matching

.V« FEUA

2: Eg < {(a,e) € Ax E:a € aff(e),pr,(e) = pré(a) =
pre(e) =1}

3: YVee E,Ny(e) ={a€ A:(e,a) € Ey}

4: By <+ {(a,e) € Ax E :a ¢ aff(e),pr,(e) = pré(a) =
1y

: Ve € E,q;(e) « q(e) —min(|No(e)|, q(e))

t Va € A, q1(a) < q(a)

: S={Ny(e) :e € E}

: Ve € E r(Np(e)) = min(|No(e)l, q(e))

: uy < ReservedMaximalMatching(V, Ey, ¢}, S, 1)

10: Ya € EU A, ¢)(a) < q(a) — |p1(a)]

11: po < MaximalMatching(V, Ey, ;)

12: By + {(a,e) € Ax E :pr,(e) =1,pré(a) # pri(e)}

13: Va € EU A, ga2(a) < gq(a) —|po(a)| — |p(a)|

14: p2 <+ MaximalMatching(A U E, Es, ¢5)

15: B3+ {(a,e) € Ax E :pr,(e) = pri(e) = 1,pré(a) =
0

0 J N W

Nel

16: YVa € EU A, q3(a) < g2(a) — |p2(a)]
17: ps < MaximalMatching(A U E| Es, ¢5)
18: return po U pq U po U ps.

E ILP Formulation and Proofs (§5)

In this section, we formulate our problem as an integer linear
program (ILP). As this is a rather standard and straightfor-
ward solution, and ILP solvers are known to be efficient in
practice, this is a good baseline to compare our algorithm to.
Let z. o, foralle € E and a € A denote (e, a) is matched
if ze,, = 1 and (e, a) is unmatched if z., = 0. Our basic
constraints are as follows:

Ve € E,a€ Az, €{0,1} (1)
Vee E: z Ze,a < q(e) 2)

a€A
Vae€ A: Z Ze,a < q(a) 3)

ecE

These constraints simply ensure all edges are matched or not
and the number of matches containing an agent does not ex-

ceed that agent’s capacity. Note that this is sufficient to ensure
that we have a valid matching. Now we need to consider sta-
bility. To do this concisely, we introduce a function coeff :
B — N, where B is the set of tuples T = (a,a’,a”,e,¢’,e")
that satisfy all conditions for being a blocking tuple except
those that depend on p (i.e., if we introduce the appropriate
u, T is a blocking tuple). Note that our definition of 5 de-
termines the weight selection for our valuation function, as it
determines which potential blocking tuples could actually be
blocking tuples based off of preferences. In this program, we
will use many indicators. To refrain from introducing many
new variables, we let I, for some boolean p be 1 if p is true,
and 0 otherwise. For example, I, crcg is 1 if ¢’ and e are
both in £, and otherwise it is 0. Then we can define coeff as
follows:

coeff(a,a’,a” e e, e")
=q(e)q(a)la cree + q(e)lace erge + qla)lage crce

+ Lo ergeamence +a(e”)qla”

+ q(€")erge aree + 4l

)Ha//7€//¢£U{a/7e/}
"
a)He”GE,a”¢E

This can also be thought of a conditional, where we return
a(e)q(a), g(e), q(a), 1, q(e”)g(a"), q(e”), or q(a”) depend-
ing on which elements in the tuple are in £ or not. Note that
these are all constants: it does not involve variables from the
ILP. Then our constraints to ensure stability are as follows,
where:

VT = (a,ad’,a" e e e") € B:

coeff(T)ze,q + Iogecoeff(T)(1
+ T gecoeff(T)(1

- Ze,a’)
— Zeta)]Iauggcoeff(T)zp "

coeff
+ LerngeCcOtf(T) 2o o + ———~lerce Z Ze*,a
e*eFE
coeff(T) coeff
Saazaw e X
a*€A e*el
coeff(T)
1 2 Z Ze'l,a*
q(e”) vy

<coeff(T) (4)

While these constraints may seem construed, they are derived
directly from the definition of a blocking tuple, and account
for all possible cases of a blocking tuple. Therefore, this is the
most direct translation of the DASM Problem into an ILP.

Theorem 2. The ILP defined by (1), (2), (3), and (4) solves
the DASM Problem.

We prove Theorem 2 by breaking down the construction of
the ILP.

Proof of Theorem 2. We start by constructing the ILP from
the ground up, and it will be easy to check (albeit, time-
consuming) that this ILP is just a broken down version of
the ILP in question. Let z., foralle € E and a € A de-
note (e, a) is matched if z. , = 1 and (e, a) is unmatched if
Ze,q = 0. Our basic constraints are as follows:

Ve€ E,a€ Az, €{0,1}
Ve € E:Zze,a < q(e)

acA

Va € A:qua < g(a)

eckl

These constraints simply ensure all edges are matched or
not, and the number of matches containing an agent does not
exceed its capacity. Note that this is sufficient to ensure that
we have a valid matching. Next, we must ensure stability.
We will consider a number of potential blocking tuples. We
break it down into all the different ways matches can be bro-
ken down and reformed for a swapped matching.

First: consider when some a € A and e € E are simply
undermatched. Then, without breaking matches, they are al-
lowed to match to each other. They will only do this if they
get something out of the match. We must ensure that either
they are matched together, or one has reached capacity. For
notation, let I¢ be 1 if a € aff(e) and 0 otherwise. We can
guarantee the result with the following constraint:

Va € Aje € Est.pry(e) =1Apre(a) + Ipri(e) > 1:

(Q(a) q(Z Ze,a* +q Z Ze*.a

a*€A e*cE
> q(a) - q(e)

Second: consider when e is undermatched, but a drops its
match with some ¢’ € p(a). These three together will only
form a blocking tuple if a prefers e to €’ and e gets something
out of the match. We must ensure that (a, e) is matched or
(a, €') is not matched or e is at capacity:

)Ze,a +q(a

Va € Aje € E,e¢’ € E\ {e}
s.t. pra(e) > pry(e’) Apre(a) + Igpre(e) > Igpre(€f) -
Q(e)ze,a + Q() — Ze/, a Z Ze,a* > q 6

a*€A

Third: consider when a is undermatched, but e drops its
match with some a’ € p(e). These three together will only
form a blocking tuple if e prefers a match from a to e than
a’ to e and a gets something out of the match. We must en-
sure that (a, e) is matched or (a’,) is not matched or a is at
capacity:

Va€ A,ec E,a’ € A\ {a}
s.t.pr,(e)=1
A pre(a) + Ipre(e) > pré(a’) +Is/prs’<e> :

q(a)ze,a+q()1_zea Zze a>q
e*elk

Fourth: consider when a and e drop matches e’ and a’ re-

spectively to match with each other, but neither ¢’ nor a’ de-
cide to rematch. This is only notable when both a and e prefer
being matched together. In this case, we must ensure (a, €) is
matched or (a, €’) is not matched or (a’,) is not matched.

Va € Aje € E,d' € A\ {a},e € E\ {e}

s.t. pro(e) > pr,(e')

Apre(a) + Igpre(e) > pre(a) + Igpre(e) + Ipre (e)

Zea + (1= Zear) + (1 — 2er0) 2 1

Fifth: consider when a and e drop matches ¢’ and a’ re-
spectively to match with each other, and a’ rematches with
some e’ that is undermatched and e’ does not rematch. This is
only notable when both a and e prefer being matched together
and both @’ and ¢” gain from being matched together. We
need to ensure that (a, e) is matched, (a, €’) is not matched,

(d’,€) is not matched, (a’,€”) is matched, or ¢’ is matched
to capacity:

Va € Aje € E,d' € A\ {a},e' € E\ {e},e” € E\ {e, €'}
s.t. pr,(e) > pr,(e)
Apre(a) + Igpre(e) + Ipre (¢”)
> pré(al) + Igpre(el) + Igpre (e)
Apry(e") =1 Apré(a’) + 15 pré(e”) > 1
q(e")ze,a +a(e”)(1 — ze,ar) +q(€”)(1 = zer)
+q(e)zenar + Y zerar > qle”)

a*€A

Sixth: consider when a and e drop matches ¢’ and a’ re-
spectively to match with each other, and ¢’ rematches with
some a” that is undermatched and a’ does not rematch. This
is only notable when both a and e prefer being matched
together and both ¢’ and a” gain from being matched to-
gether. We need to ensure that (a,e) is matched, (a,¢€’) is
not matched, (a’,e) is not matched, (a”,¢e’) is matched, or
a’’ is matched to capacity:

Va€ Aje€ E,a' € A\ {a},e' € E\ {e},a" € A\ {a,d}
s.t. pry(e) > pr,(€')
Apre(a) + Igpre(e) + Iupre (¢')
> pre(a) + Lgpre(¢') + Igpre (e)
Aprgn(e) =1 AprS(a") + IS pr% (¢/) > 1+
q(a")ze,a +q(@”)(1 = zear) +q(a”)(1 = zera)
+q(a")zerar + Y Zerar > qla”)

e*eE

Seventh: consider when a and e drop matches ¢’ and o’
respectively to match with each other, and a’ and €’ rematch
with some e’ and a”’ respectively that are either both under-
matched or @’/ = a’ and €”” = €’. This is only notable when

both a and e prefer being matched together, both ¢’ and ¢”
gain from being matched together, and both e’ and o’ gain
from being matched together. We need to ensure that (a,)
is matched, (a,e€’) is not matched, (a’,e) is not matched,
(a’,€e") is matched, (a”,€’) is matched, or if a” # o’ and
e # ¢, then either o’ or ¢’ is matched to capacity (recall
Jar o = 1if and only if a”’ # a'):

Va € Ae € E,a' € A\ {a},e¢' € E\ {e},d" € A\ {a,d}
s.t. pr,(e) > pr,(€)

Apre(a) + Igpre(e) + Lgupre (¢') = Igpre(e') + Igpre (o)
Apry(e”) =1 Aprs(a) + IS prén(e”) > 1
Apros(e) =1 AprS(a”) + IS pr% (¢') > 1:

(g(a”) - q(€"))ze,a + (q(a”) - q(e”))(1 — ze,ar)

+(q(a”) - q(e")(1 = zer,0) + (q(a”) - q€”)) zer 0

+ (a(a”) - a(€"))zer o

T <q<e~> S cear +ala”) Y)

e*eFk a*€A
> (q(a”) - q(e"))

This encodes all the cases for the existence of a blocking
tuple. Therefore, solutions to the ILP directly correspond to
solutions to the dichotmous affiliate stable matching problem.
Note that the ILP of interest is actually equivalent to this, one
simply needs to go through each type of blocking tuple and
check the inequalities. O

	1 Introduction
	2 Model Definition
	2.1 The Dichotomous Affiliate Stable Matching Problem
	2.2 Blocking Tuples and Stability

	3 Evidence from a Human Experiment
	4 DASM Solved in Quadratic Time
	5 Scalability Experiments
	6 Conclusions & Future Research
	A Problem Motivation (§1)
	B Model Definition Proofs (§2)
	C Survey Methods and Results (§3)
	C.1 Survey Design
	C.2 Results
	C.3 Complete Protocol

	D Main Algorithm Proofs and Pseudocode (§4)
	D.1 The Reserved Maximal b-Matching Problem
	D.2 PriorityMatch Proofs
	D.3 SmartPriorityMatch Proofs
	D.4 SmartPriorityMatch Pseudocode

	E ILP Formulation and Proofs (§5)

