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Abstract
In barter exchanges, participants directly trade their endowed
goods in a constrained economic setting without money. Trans-
actions in barter exchanges are often facilitated via a central
clearinghouse that must match participants even in the face
of uncertainty—over participants, existence and quality of
potential trades, and so on. Leveraging robust combinatorial
optimization techniques, we address uncertainty in kidney
exchange, a real-world barter market where patients swap
(in)compatible paired donors. We provide two scalable ro-
bust methods to handle two distinct types of uncertainty in
kidney exchange—over the quality and the existence of a po-
tential match. The latter case directly addresses a weakness
in all stochastic-optimization-based methods to the kidney
exchange clearing problem, which all necessarily require ex-
plicit estimates of the probability of a transaction existing—a
still-unsolved problem in this nascent market. We also propose
a novel, scalable kidney exchange formulation that eliminates
the need for an exponential-time constraint generation process
in competing formulations, maintains provable optimality, and
serves as a subsolver for our robust approach. For each type
of uncertainty we demonstrate the benefits of robustness on
real data from a large, fielded kidney exchange in the United
States. We conclude by drawing parallels between robustness
and notions of fairness in the kidney exchange setting.

1 Introduction
Real-world optimization problems face various types of un-
certainty that impact both the quality and feasibility of can-
didate solutions. Uncertainty in combinatorial optimization
is especially troublesome: if the existence of certain con-
straints or variables is uncertain, identifying a good—or even
feasible—solution can be extremely difficult. Stochastic opti-
mization approaches endeavor to maximize the expected ob-
jective value, under uncertainty. While sometimes successful,
stochastic optimization relies heavily on a correct characteri-
zation of uncertainty; furthermore, stochastic approaches are
often intractable—especially in combinatorial domains (Bert-
simas et al. 2011a). A complementary approach is robust
optimization, which protects against worst-case outcomes.
Robust approaches can be less sensitive to the exact charac-
terization of uncertainty, and are often far more tractable than
stochastic approaches (Ben-Tal et al. 2009).
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This paper addresses uncertainty in kidney exchange, a real-
world barter market where patients with end-stage renal dis-
ease enter and trade their willing paired kidney donors (Rapa-
port 1986; Roth et al. 2004). Kidney exchange is a relatively
new paradigm for organ allocation, but already accounts for
over 10% of living kidney donations in the United States, and
is growing in popularity worldwide (Biró et al. 2017). Mod-
ern exchanges also include non-directed donors (NDDs), who
enter the market without a paired patient and donate their kid-
ney without receiving one in return. Computationally, kidney
exchange is a packing problem: solutions (matchings) consist
of cyclic organ swaps and NDD-initiated donation chains in
a directed compatibility graph, representing all participants
and potential transactions. Each potential transplant is given
a numerical weight by policymakers; the objective is to select
cycles and chains that maximize overall matching weight.
In general, this problem is NP-hard (Abraham et al. 2007;
Biró et al. 2009); however, many efficient deterministic
formulations exist that are fielded now and clear real ex-
changes (Abraham et al. 2007; Manlove and O’Malley 2015;
Anderson et al. 2015; Dickerson et al. 2016; 2018).

Uncertainty in kidney exchange. Presently-fielded kidney
exchange algorithms largely do not address uncertainty. Here,
we consider two types of uncertainty in kidney exchange:
over the quality of the transplant (weight uncertainty) and
over the existence of potential transplants (existence uncer-
tainty). Policymakers assign weights to potential transplants,
which are (imperfect) estimates of transplant quality; weight
uncertainty stems from both measurement uncertainty (e.g.,
medical compatibility and kidney quality) and uncertainty
in the prioritization of some patients over others. Transplant
existence is always uncertain: matched transplants “fail” be-
fore executing for a variety of reasons, severely impacting
a planned kidney exchange. To address both cases, we pro-
pose uncertainty sets containing different realizations of the
uncertain parameters. We then develop a scalable robust opti-
mization approach, and demonstrate its success on data from
a large fielded kidney exchange.

Robust optimization is a popular approach to optimiza-
tion under uncertainty, with applications in reinforcement
learning (Petrik and Subramanian 2014), regression (Xu et
al. 2009), classification (Chen et al. 2017), and network opti-
mization (Mevissen et al. 2013). Motivated by real-world con-
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straints, we apply robust optimization to kidney exchange—a
graph-based market clearing or resource allocation problem.

Our Contributions. To our knowledge, weight uncertainty
has not been addressed in the kidney exchange literature.
Our approach is similar to that of Bertsimas and Sim (2004)
and Poss (2014), and uses some of their results. Several
approaches have been proposed for existence uncertainty,
primarily based on stochastic optimization (Dickerson et al.
2016; Anderson et al. 2015; Dickerson et al. 2018) or hier-
archical optimization (Manlove and O’Malley 2015). The
primary disadvantage of these approaches—in addition to
tractability—is their reliance on, and sensitivity to, the ex-
plicit estimation of the probability of each particular potential
transplant. This probability is extremely difficult to deter-
mine (Dickerson et al. 2018; Glorie 2012), and prevents the
translation of those methods into practice. Our approach uses
a simpler notion of edge existence uncertainty—an upper-
bound on the number of non-existent edges—which is easier
to interpret and estimate. Glorie (2014) proposed a related
robust formulation that is exponentially larger than ours, and
is intractable for realistically-sized exchanges.

In addition, we introduce a new scalable formulation for
kidney exchange that combines concepts from two state-of-
the-art formulations (Anderson et al. 2015; Dickerson et
al. 2016), handles long or uncapped NDD-initiated chains
without requiring expensive constraint generation, and ties
into a developed literature on fairness in kidney exchange—
thus addressing use cases that are becoming more common
in fielded exchanges (Anderson et al. 2015).

2 Preliminaries

Model for kidney exchange. A kidney exchange can be rep-
resented formally by a directed compatibility graph G =
(V,E). Here, vertices v ∈ V represent participants in the
exchange, and are partitioned as V = P ∪N into P , the set
of all patient-donor pairs, and N , the set of all NDDs (Roth
et al. 2004; 2005; Abraham et al. 2007). Each potential trans-
plant from a donor at vertex u to a patient at vertex v is
represented by a directed edge e = (u, v) ∈ E, which has
an associated weight we ∈ w; weights are set by policy-
makers, and reflect both the medical utility of the transplant,
as well as ethical considerations (e.g., prioritizing patients
by waiting time, age, and so on). Cycles in G correspond
to cyclic trades between multiple patient-donor pairs in P ;
chains, correspond to donations that begin with an NDD in
N and continue through multiple patient-donor pairs in P .
The kidney exchange clearing problem is to select a feasi-
ble set of transplants (edges in E) that maximize overall
weight. Let M be the set of all feasible matchings (i.e.,
solutions) to a kidney exchange problem; the general for-
mulation of this problem is maxx∈M x · w, where binary
decision variables x represent edges, or cycles and chains.
This problem is NP- and APX-hard (Abraham et al. 2007;
Biró et al. 2009).

Robust optimization. Robust optimization is a common ap-
proach to optimization under uncertainty, which is often more
tractable and requires less accurate uncertainty information

than other approaches (Bertsimas et al. 2011a). This approach
begins by defining an uncertainty set U for the uncertain op-
timization parameter; U contains different realizations of
this parameter. Consider the example of edge weight uncer-
tainty: we might design an edge weight uncertainty set Uw
that contains the realized (i.e. “true”) edge weights ŵ with
high probability, P (ŵ ∈ Uw) ≥ 1− ε, for 0 < ε � 1. The
parameter ε is referred to as the protection level, and is often
used to control the number of realizations in U .

After designing U , the robust approach finds the best so-
lution, assuming the worst-case realization within U . For
kidney exchange (a maximization problem), this corresponds
to a minimization over U ; for example, Problem (1) is the
robust formulation with uncertain edge weights.

max
x∈M

min
ŵ∈U

x · ŵ (1)

The robustness of this approach depends on the proportion
of possible realizations contained in U . If U contains all
possible realizations, the approach may be too conservative;
if U only contains one possible realization of ŵ, the solution
may be too myopic. The number of realizations in U is often
controlled by a parameter: either an uncertainty budget Γ,
or the protection level ε. Next we introduce the first type of
uncertainty considered in this paper: edge weight uncertainty.

3 Optimization in the Presence of Edge
Weight Uncertainty

Edge weights in kidney exchange represent the medical and
social utility gained by a single kidney transplant. Weights
are determined by policymakers, and are subject to sev-
eral types of uncertainty.1 Part of this uncertainty is due
to insufficient knowledge of the future: a patient or donor’s
health may change, raising or lowering the “true” weight
of their transplant edges. Another type of uncertainty stems
from disagreement between policymakers regarding the so-
cial utility of a transplant. For example, some policymakers
might prioritize young patients over older patients; other
policymakers might prioritize the sickest patients above all
healthier patients. Policymakers aggregate these value judg-
ments to assign a single weight to each transplant edge,
but this aggregation is a contentious and imperfect process
(although recent work from the AI community has begun
to address this using techniques from computational so-
cial choice and machine learning (Freedman et al. 2018;
Noothigattu et al. 2018)). Still, there is no way to measure
the “true” social utility of a transplant, and therefore this
uncertainty is not easily measured.

Interval weight uncertainty. It is beyond the scope of this
work to characterize these sources of uncertainty. We sim-
ply assume that the nominal edge weights w, provided by
policymakers, are an uncertain estimate of the realized edge
weights ŵ, i.e., the “true” value of each transplant. Next, we
formalize edge weight uncertainty and our robust approach.
This section focuses on edge weights, so we write our for-

1The process used to set weights by the UNOS US-wide kidney
exchange is published publicly (UNOS 2015).



mulations with decision variables xe ∈ x corresponding to
individual edges.

We assume that realized edge weights ŵ are random vari-
ables with a partially known symmetric distribution, centered
about the nominal weights w. This assumption implies that
E[ŵ] = w, thus a non-robust approach that maximizes w is
equivalent to a stochastic optimization approach that maxi-
mizes expected edge weight. We refer to this edge uncertainty
model as interval uncertainty.

Definition 1 (Interval Edge Weight Uncertainty). Let ŵe
be the realized weight of edge e, with nominal weight we,
and maximum discount 0 ≤ de ≤ we. Let ŵe ≡ we +
deαe, where αe is the fractional deviation of edge e. Both
αe and ŵe are continuous random variables, symmetrically
distributed on [−1, 1] and [we − de, we + de] respectively.

Each discount factor de should reflect the level of uncer-
tainty in we. If we is known exactly, then de = 0; if we is
very uncertain, then we might set de = we, or higher.

To vary the degree of uncertainty, we use an uncertainty
budget Γ, which limits the total deviation from nominal edge
weights. With our uncertainty model, it is natural to let Γ
limit the total fractional deviation of each edge weight—i.e.,
sum of all αe. This uncertainty set UIΓ is defined as:

UIΓ =

{
ŵ | ŵe = we + deαe, |αe| ≤ 1,

∑
e∈E
|αe| ≤ Γ

}

For example if Γ = 3, there may be three edges with
|αe| = 1, or one edge with |αe| = 1 and four edges with
|αe| = 1/2, and so on.

Choosing an appropriate Γ is not straightforward. Match-
ings often use only a small fraction of the decision variables
(e.g., transplant edges), and it is difficult to predict the size
of the optimal matching. Intuitively, Γ should reflect the size
of the final matching: for example if we assume that half of
any matching’s edges will be discounted, then we should set
Γ ' |x|/2. Generalizing this concept, we define a variable-
budget uncertainty set UIγ , with budget function γ(|x|).

UIγ =

{
ŵ | ŵe = we + deαe, |αe| ≤ 1,

∑
e∈E
|αe| ≤ γ(|x|)

}
Next, to define γ, we relate it to a much more intuitive

parameter: the protection level ε.

3.1 Uncertainty Budget γ and Protection Level ε
The protection level ε mediates between a completely conser-
vative approach, and the non-robust approach: as ε→ 0 the
approach becomes more conservative, and ε = 1 corresponds
to a non-robust approach. In this section we relate γ to ε,
beginning with the following Theorem 1.

Theorem 1 (Adapted from Theorem 3 of (Bertsimas and Sim
2004)). For a matching x ∈ M with |x| edges, and uncer-
tainty set UIΓ, the probability that UIΓ contains the realized
edge weights for x is bounded below by

P (ŵ ∈ UIΓ) ≥ 1−B(|x|,Γ),

with

B(|x|,Γ) =
1

2|x|

(1− µ)

(
|x|
bηc
)

+

|x|∑
l=bηc+1

(
|x|
l

) ,

with η = (Γ + |x|)/2 and µ = η − bηc.
That is, for some ε, if Γ is chosen such that ε = B(|x|,Γ),

then the inequality P (ŵ ∈ UIΓ) ≥ 1− ε holds by Theorem
1. Next, we use this result to define a variable uncertainty
budget function γ, using the intuitive definition introduced
by Poss (2014): for matching x ∈ M and protection level
ε, we find the minimum Γ such that B(|x|,Γ) ≤ ε. If this is
not possible (i.e., the matching is too small, or ε is too small),
then γ = |x|. This budget function is defined as:

β(|x|) =

|x| if min
Γ>0
{Γ | B(|x|,Γ) ≤ ε} is infeasible,

min
Γ>0
{Γ | B(|x|,Γ) ≤ ε} otherwise.

It may not be clear how to solve the edge weight robust
problem with this variable uncertainty budget. We use the
approach of Poss (2014), which solves the variable-budget
robust problem by solving several instances of the constant-
budget robust problem; details of this approach can be found
in Appendix A.4. Thus, to solve the variable-budget robust
problem we first solve the constant-budget robust problem.

3.2 Constant-Budget Edge Weight Robust
Approach

We now describe our approach to the constant-budget edge
weight robust problem; a full discussion and derivation can
be found in Appendix A. We need to solve Problem (1) with
edge weight uncertainty set UIΓ. This requires a minimization
of the objective, over ŵ ∈ UIΓ, followed by a maximization
over matchings inM.

First we directly minimize the objective of Problem (1)
over UIΓ. That is, for any matching x ∈ M, we find the
minimum objective value for any realized edge weights in
UIΓ, denoted by Z(x):

Z(x) = min
ŵ∈UIΓ

x · ŵ (2)

Thus, solving the robust problem corresponds to maximizing
Z(x) over all feasible matchings. Our approach to doing
so is as follows. First, we linearize Z(x) using several new
variables and constraints; we then add these to an existing
kidney exchange formulation (Dickerson et al. 2016). The
complete linear formulations of Z(x) and Problem (1) are
given in Appendix A.2, but are omitted here for space. Our
robust formulation is scalable—it has a polynomial count of
variables and constraints, regardless of finite chain cap; on
realistic exchanges it takes only a few seconds to solve. We
demonstrate our method’s impact on match composition in
Section 5, and show how it effectively controls for the impact
of robustness using protection level ε.

4 Optimization in the Presence of Edge
Existence Uncertainty

In this section we consider edge existence uncertainty, where
an algorithmic match must be chosen before the full real-
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Figure 1: Sample exchange graph with a 5-chain and two
2-cycles. The NDD is denoted by n, and each patient (and
her associated donor) is denoted by pi (di). A maximum-
cardinality matching algorithm would select the 5-chain, de-
noted with dashed edges; however, the smaller matching
consisting of two disjoint 2-cycles, shown with solid edges,
may be more robust to edge failure.

ization of edges is revealed. Algorithmically-matched trans-
plants in a kidney exchange can fail before transplantation
for a variety of reasons: a patient may become too ill to
undergo transplantation, or pre-transplantation testing may
reveal that a patient is incompatible with her planned donor
kidney. Furthermore, some edges are more likely to fail
than others (e.g., edges into particularly sick patients). Edge
failure significantly impacts fielded exchanges–with failure
rates above 50% in many cases (Dickerson et al. 2018;
Anderson et al. 2015; Ashlagi et al. 2013).

For illustration, consider the simple exchange in Figure 1
with two potential matchings: single 5-chain initiated by the
NDD, or two 2-cycles (with pairs {1, 4} and {2, 5}). The
5-chain matches the most patient, but is less robust to edge
failures. Consider the worst-case outcome for each matching,
when 1 edge is guaranteed to fail: with the 5-chain, in the
worst-case the first edge fails, causing the entire chain to
fail; with the 2-cycles, a single edge failure only causes a
single cycle to fail, leaving the other cycle complete. With
this notion of edge existence uncertainty (which we define
later), the 2-cycles are more robust than the 5-chain.

Managing edge failure in kidney exchange has been ad-
dressed in the AI and optimization literature in application-
specific (Manlove and O’Malley 2015; Chen et al. 2012) or
stochastic-optimization-based (Dickerson et al. 2018; 2016;
Anderson et al. 2015; Klimentova et al. 2016) ways. These
failure-aware approaches associate with each edge a pre-
determined failure probability pe; these probabilities are used
to then maximize expected matching score, possibly subject
to some recourse actions. This stochastic approach is tractable
when pe is identical for each edge. Our work addresses two
major drawbacks of the failure-aware approach. First, when
each edge has a unique pe, those models require enumerating
every cycle and chain, which is intractable for large graphs
or long chains. Second, the failure-aware approach is very
sensitive to pe (as discussed in, e.g., §4.4 of Dickerson et
al. (2018)). In practice, precise values of pe are not known,
thus the failure-aware approach can easily produce unreliable

results. We use a simpler notion of edge existence uncertainty,
which assumes that in any matching, the number of edges is
bounded by a constant (Γ). This parameter is intuitive and
simple to estimate from past exchanges.

To our knowledge, ours is the first scalable robust opti-
mization approach to edge existence uncertainty in kidney
exchange. Glorie (2014) develops several elegant robust meth-
ods for edge existence uncertainty, but requires that all cy-
cles and chains are found during pre-processing and stored
in memory. The number of chains grows exponentially in
both the number of edges and the maximum chain length;
thus, these approaches are intractable for exchanges involving
more than a few dozen patient-donor pairs and NDDs.

Edge existence uncertainty. Here we briefly describe our
robust approach to edge existence uncertainty; a full discus-
sion and derivation can be found in Appendix B. For ease
of exposition, in this section, decision variables xc ∈ x cor-
respond to cycles and chains rather than edges. We use the
following model of edge existence uncertainty.
Definition 2 (Γ-Failures Edge Existence Uncertainty). Up
to Γ edges may fail in any matching. After failures occur,
the realized exchange graph is Ĝ = (V, Ê), such that edges
Ê ⊆ E succeed and remain in existence, while all other
edges fail and do not exist.

With this notion of uncertainty, without regard to computa-
tional or memory constraints, a stochastic-optimization-based
approach could identify the best matching over all possible
realizations Ĝ (Anderson et al. 2015). This is clearly in-
tractable, as the number of realized graphs is exponential
in |E|. Instead, we take a robust optimization approach by
maximizing the worst-case (minimum) matching score over
a set of realizable graphs Ĝ in an uncertainty set U . Like the
stochastic approach, the robust approach considers a huge
number of realizations Ĝ; however the robust approach is far
more tractable, as it need only find the worst-case realization
and need not represent all realizable graphs explicitly.

Uncertainty set. Let F ⊆ E be the subset of failed edges
for a realized graph Ĝ; thus, Ê = E \F is the set of realized
edges. Equation (3) defines uncertainty set UexΓ in this way:
up to Γ edges may fail (i.e., |F | ≤ Γ).

UexΓ =
{
Ĝ = (V, Ê) | Ê = E \ F, |F | ≤ Γ

}
(3)

In kidney exchange, one edge failure can cause other edge
failures: if one cycle edge fails, all edges in the cycle also
fail; edge failure in a chain causes all subsequent chain edges
to also fail. This leads to a notion of weight uncertainty
for cycles and chains, where the realized weight of a cycle
or chain ŵc may be smaller than nominal weight wc. Let
αc be a discount parameter for cycle or chain c, such that
ŵc = wc(1 − αc). For example, if any edge fails in cycle
c, then the entire cycle fails and αc = 0. We define the
cycle/chain weight uncertainty set UwΓ in this way:

UwΓ =

{
ŵc | ŵc = wc(1− αc), αc ∈ [0, 1],

∑
c∈X

αi ≤ Γ

}



This uncertainty set is less intuitive than UexΓ , but more suited
to the robust approach. In Appendix B we show that UwΓ and
UexΓ are equivalent for integer Γ, and thus can be used for our
robust approach.

4.1 Robust Optimization Approach
In this section we briefly describe our robust approach; for a
full discussion and derivation, please see Appendix B. Our
robust formulation for uncertainty set UwΓ follows a similar
approach to Section 3. First, we directly minimize the kid-
ney exchange objective over UwΓ , for some feasible solution
x ∈ M. We express this minimization as a function Z(x):
in effect, Z(x) discounts the Γ largest-weight cycles and
chains. We then linearize Z(x) using several variables and
constraints—this requires a formulation with variables track-
ing individual total chain weights—which is not possible in
any existing compact kidney exchange formulations. For this
purpose, we introduce a new kidney exchange formulation.

The PI-TSP formulation. We propose the position-indexed
TSP formulation (PI-TSP); for details, please see Appendix B.
Our formulation combines innovations from the two leading
kidney exchange clearing approaches: PICEF (Dickerson
et al. 2016) and PC-TSP (Anderson et al. 2015). PICEF
introduced an indexing schema that enables a more com-
pact formulation in the context of long chains; our formu-
lation builds on this to allow tracking of individual chain
weights, a necessity that PICEF could not do. PC-TSP builds
on techniques from the prize-collecting travelling salesperson
problem (Balas 1989) to provide a tight linear programming
relaxation; in general, the PC-TSP formulation has exponen-
tially many constraints and thus requires constraint genera-
tion to solve. Our formulation uses an efficient version of
position indexing that also requires onlyO(|E|)+O(|V |·|N |)
constraints. Unlike PICEF, our formulation does not grow
with the chain cap L: PICEF uses O(|V |3) variables (when
L→ |V |); for large graphs, the PICEF model becomes too
large to fit into memory (Dickerson et al. 2016). Our for-
mulation uses a fixed number of variables—O(|V |2)—for
any chain cap, alleviating this memory problem. This is es-
pecially relevant to existing exchanges, as long chains can
significantly increase efficiency in kidney exchange (Ashlagi
et al. 2012). PI-TSP uses the following parameters:

• G: kidney exchange graph,
• C: a set of cycles on exchange graph G,
• L: chain cap (maximum number of edges used in a chain),
• we: edge weights for each edge e ∈ E,
• wCc : cycle weights for each cycle c ∈ C,

and the following decision variables:

• pe ≥ 1: the position of edge e in any chain,

• pv ≥ 1: the position of patient-donor vertex v in any chain,

• p̂e ≥ 0: equal to pe if e is used in a chain, and 0 otherwise,

• zc ∈ {0, 1}: 1 if cycle c is used in the matching, and 0
otherwise,

• ye ∈ {0, 1}: 1 if edge e is used in a chain, and 0 otherwise,

• yne ∈ {0, 1}: 1 if edge e is used in a chain starting with
NDD n, and 0 otherwise,

• wNn : total weight of the chain starting with NDD n,
• f iv and fov : chain flow into and out of vertex v ∈ P ,
• f i,nv and f i,nv : chain flow into and out of vertex v ∈ P ,

from the chain starting with NDD n ∈ N .
The PI-TSP formulation with chain cap L is given in Problem
4. We use the notation δ−(v) for the set of edges into vertex
v and δ+(v) for the set of edges out of v.

max
∑
n∈N

w
N
n +

∑
c∈C

w
C
c zc (4a)

s.t.
∑
e∈E

wey
n
e = w

N
n n ∈ N (4b)

∑
n∈N

y
n
e = ye e ∈ E (4c)

∑
e∈δ−(v)

ye = f
i
v v ∈ V (4d)

∑
e∈δ+(v)

ye = f
o
v v ∈ V (4e)

∑
e∈δ−(v)

y
n
e = f

i,n
v v ∈ V, n ∈ N (4f)

∑
e∈δ+(v)

y
n
e = f

o,n
v v ∈ V, n ∈ N (4g)

f
o
v +

∑
c∈C:v∈c

zc ≤ f
i
v +

∑
c∈C:v∈c

zc ≤ 1 v ∈ P (4h)

f
o
v ≤ 1 v ∈ N (4i)

pe = 1 e ∈ δ+(N) (4j)

p̂e = peye e ∈ E (4k)

pv =
∑

e∈δ−(v)

p̂e v ∈ P (4l)

pe = pv + 1 v ∈ P, e ∈ δ+(v)
(4m)∑

e∈E
y
n
e ≤ L n ∈ N (4n)

f
o,n
v ≤ fi,v ≤ 1 v ∈ V, n ∈ N (4o)

ye ∈ {0, 1} e ∈ E (4p)

zc ∈ {0, 1} c ∈ C (4q)

y
n
e ∈ {0, 1} e ∈ E, n ∈ N (4r)

The ability to express individual chain weights as decision
variables has applications beyond robustness. For particu-
larly valuable NDDs (such as those with so-called “univer-
sal donor” blood-type O), exchanges may enforce a min-
imum chain length or chain weight, to ensure that these
rare NDDs are not “used up” on short chains; such a policy
was formerly used by the United Network for Organ Shar-
ing (Dickerson et al. 2012), using a much less scalable form
of optimization—that also does not consider uncertainty—
than our approach (Abraham et al. 2007). Such a policy can
be implemented efficiently with PI-TSP, inefficiently with
PC-TSP, and not with PICEF, where decision variables do not
indicate from which NDD a chain originated. In Appendix B
we show–using real kidney exchange data–that PI-TSP can
enforce a minimum chain length, and that this restriction has
almost no impact on overall matching score.

5 Experimental Results
In this section, we compare each robust formulation against
the leading non-robust formulation, PICEF (Dickerson et



al. 2016), with varying levels of uncertainty. These experi-
ments use real exchange graphs collected from the United
Network for Organ Sharing (UNOS)—a large US-wide kid-
ney exchange with over 160 participating transplant centers—
between 2010 and 2016, as well simulated exchanges gen-
erated from known patient statistics using the standard
method (Dickerson et al. 2018).2

For each exchange, we calculate the optimal non-robust
matching MOPT (with total score |MOPT|), and the robust
matching MR, for varying uncertainty budgets. We then
draw many realizations of the exchange graph, based on
the uncertainty model, and calculate the realized scores
of the robust matching |MR| and non-robust matching
|MNR|. We are primarily interested in the fractional dif-
ference from |MOPT|, calculated as ∆OPT

(
M{R,NR}

)
=(

|MOPT| − |M{R,NR}|
)
/|MOPT|.

We calculate ∆OPT (MR) and ∆OPT (MNR) for N =
400 realizations, and compare the robust and non-robust ap-
proaches. In rare cases the optimal matching is empty (i.e.,
there is no solution, or the uncertainty budget exceeds the
matching size), we exclude these exchanges from the results.

Edge Weight Uncertainty We begin by exploring the im-
pact on match utility of robust approaches to managing edge
weight uncertainty. Here, each edge is randomly labeled as
probabilistic (P) or deterministic (D). P edges receive weight
0 or 1 with probability 0.5, while D edges always receive
weight 0.5; thus, expected edge weight is always 0.5. The
non-robust approach maximizes expected edge weight, mak-
ing this a kind of stochastic approach. The robust approach
considers the discount value (0 or 0.5) of each edge, and
avoids edges with a positive discount value. To vary the level
of uncertainty, we vary the fraction of P edges (α). Each
realization is drawn by assigning the P edges to have weight
either 0 or 1.

We compute MR for protection levels ε ∈
{10−4, 10−3, 10−2, 10−1, 0.5}, and then calculate both
∆OPT (MR) and ∆OPT (MNR). Figure 2 shows ∆OPT
on realistic 64-vertex simulated graphs (left) and larger
(typically 150–300-vertex) real UNOS graphs (right); these
figures show results for each protection level ε and for
various α. Note that MNR does not depend on ε, and thus the
non-robust results are shown as (constant) dashed lines.

The robust approach guarantees a better worst-case (min-
imum) ∆OPT , but results in a lower median ∆OPT . The
protection level ε controls the robustness of our approach;
smaller ε protects against more uncertain outcomes, but at
greater cost to nominal behavior. As ε → 1, the robust ap-
proach protects against fewer bad outcomes, and approaches
the behavior of non-robust.

Edge Existence Uncertainty We now address edge exis-
tence uncertainty, and compare the robust and non-robust
approaches with Γ edge failures, for Γ ∈ {1, 2, 3, 4, 5}. Each

2All experiments were implemented in Python and used
Gurobi (Gurobi Optimization, Inc. 2018), a state-of-the-art in-
dustrial combinatorial optimization toolkit, as a sub-solver. Our
code is available on GitHub: https://github.com/duncanmcelfresh/

RobustKidneyExchange.

Γ corresponds to a different notion of uncertainty, such that
exactly Γ edges fail.3 For each Γ, we calculate MR, and draw
N = 400 realizations by failing Γ edges in the matching.

We calculate ∆OPT for each realization, and compare
these results for the robust and non-robust matchings. With
edge existence uncertainty, the worst-case outcome is almost
always an empty matching (∆OPT () = −1). Thus, rather
than compare the worst-case ∆OPT , we compare the dis-
tribution of ∆OPT for each approach: we treat ∆OPT as
a random variable, and use three simple statistical tests to
demonstrate that—as expected—the robust approach pro-
duces more conservative and predictable results.

First, we use the Wilcoxon signed-rank test to determine
that the robust and non-robust approaches produce a differ-
ent distribution of ∆OPT . For each Γ, this test produces
p-values well below 10−3, indicating that the distributions of
∆OPT are different for the robust and non-robust approach.
Second, for all exchanges and all Γ, the mean ∆OPT is
typically 1% higher, and the standard deviation 1–2% lower
for the robust approach. That is, the robust approach more
consistently produces higher-weight solutions.

Third, we visualize the difference between these distribu-
tions using their histograms. Figure 3 shows the bin-wise
difference between the histograms of ∆OPT (robust minus
non-robust), with mean ∆OPT for non-robust shown as a
dotted line. In these plots, the height of the bars indicate the
change in probability density due to robustness. On all plots,
the bars are negative for high and low values of ∆OPT ,
meaning that the robust matching is less likely to have an
abnormally high or low ∆OPT . The bars are positive when
∆OPT is near its mean non-robust value—meaning that the
robust matching is more likely to have a ∆OPT near the
mean non-robust value. This is exactly the desired behav-
ior: robustness produces more predictable and less varied
results. In this application robustness exceeds expectations:
the robust approach achieves a lower variance, and slightly
improves nominal performance.

6 Robustness as Fairness
Balancing efficiency and fairness is a classic economic prob-
lem; recently, a body of literature covering fairness in kidney
exchange has developed in the AI/Economics (Dickerson et
al. 2014; McElfresh and Dickerson 2018; Ashlagi et al. 2013;
Ding et al. 2018) and medical ethics (Gentry et al. 2005) com-
munities; Appendix C presents a more thorough discussion.
We now draw connections between robustness and fairness
in kidney exchange. We show that budgeted edge weight un-
certainty generalizes weighted fairness in kidney exchange,
a generalization of “priority point” systems used in practice
(see, e.g., (UNOS 2015)). Though seemingly unrelated, fair-
ness and robustness share a key characteristic: the balance
between two competing properties. Fairness rules in kidney
exchange often mediate between a fair and efficient outcome,
using a parameter to set the balance. Similarly, robustness
mediates between a good nominal outcome with the worst-

3This is slightly more conservative than the notion of uncertainty
introduced previously; in Section 4, up to Γ edges may fail, while
in the experiments exactly Γ edges fail.
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Figure 3: Difference between the robust and non-robust histograms of ∆OPT (robust minus non-robust) for real UNOS (top)
and simulated exchanges (bottom), for various Γ. Dotted line: mean ∆OPT for non-robust.

case outcome, using an uncertainty budget or protection level
to set that balance.

In kidney exchange, fairness most often refers to the pri-
oritization of both pediatric and highly-sensitized patients,
who are unlikely to find a match due to medical character-
istics that make them incompatible with nearly all potential
donors. In the weighted fairness approach, edges that rep-
resent transplants to prioritized patients receive additional
edge weight, making them more likely to be matched by
standard algorithms; versions of this prioritization scheme
are used by most exchanges, including UNOS. To general-
ize weighted fairness, let each edge have a priority weight
ŵe ∈ [0,∞), equal to the nominal weight we multiplied by a
factor (1 + αe), with αe ∈ [−1,∞). For example, we might
set αe > 0 for all edges into prioritized patients; this will help
prioritized patients, but will likely lower overall efficiency (a
tradeoff often described as the price of fairness (Caragiannis
et al. 2009; Bertsimas et al. 2011b; Dickerson et al. 2014;
McElfresh and Dickerson 2018)).

To balance fairness with efficiency, policymakers limit the
degree of prioritization. Let PΓ be a budgeted prioritization
set, which bounds the sum of absolute differences between

each we and ŵe; this prioritization set is given as:

PΓ =

{
ŵ | ŵe = we(1 + αe), αe ≥ −1,

∑
e∈E

αewe ≤ Γ

}
As with edge weight uncertainty, the budget Γ balances be-
tween fairness and efficiency. If Γ is large, the algorithm
might sacrifice matching size in order to match prioritized
patients—but the maximum amount of efficiency sacrificed
will be predictable, given Γ, which is attractive to policymak-
ers. In Appendix C we further develop this concept, propose
fairness rules that use PΓ, and present some theoretical re-
sults regarding the balance between fairness and efficiency.

7 Conclusions & Future Research
In this paper, we presented the first scalable robust formu-
lations of kidney exchange. Our methods address both un-
certainty over the quality and the existence of a potential
transplant. On real and simulated data from a large, fielded
kidney exchange, we showed that our methods (i) clear the
market within seconds and (ii) result in more predictable and
better quality matchings than the status quo.

Adapting automated ethical decision-making frameworks
that aggregate noisy human value judgments (Noothigattu et



al. 2018; Freedman et al. 2018; Bonnefon et al. 2016) into
our robust formulation is a natural way to handle uncertainty
in the weights determined by a committee of stakeholders.
Approaching dynamic kidney exchange, where participants
arrive and depart over time, via robust reinforcement learning
methods would be fruitful (Lim et al. 2013; Xu and Mannor
2010).
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Appendix to: Scalable Robust Kidney Exchange
A Edge Weight Robust Formulation

We develop an edge weight robust formulation with uncertainty set UIΓ, based on the position-indexed chain-edge formulation
formulation (PICEF) introduced by Dickerson et al. (2016). In Section A.1 we review the PICEF formulation, and in Section A.2
we introduce our linear formulation for edge-weight robust kidney exchange.

Section A.3 and Section A.4 describe the solution methods for constant uncertainty budget Γ and variable uncertainty budget
γ(|x|) for decision variables x, respectively.

For simplicity, we use the abbreviation KEX(U) to refer to the robust kidney exchange problem, with uncertainty set U .

A.1 PICEF Formulation
The position-indexed chain-edge formulation (PICEF) is a compact formulation proposed by Dickerson et al. (2016), with a
polynomial (with regard to the compatibility graph size and exogenous cycle cap) count of both variables and constraints. This
formulation uses the following parameters:

• G: kidney exchange graph, consisting of edges e ∈ E and vertices v ∈ V = P ∪N , including patient-donor pairs P and
NDDs N

• C: a set of cycles on exchange graph G
• L: chain cap (maximum number of edges used in a chain)
• we: edge weights for each edge e ∈ E
• wCc : cycle weights for each cycle c ∈ C, defined as wCc =

∑
e∈c we

This formulation uses one decision variable for each cycle, and several decision variables for each edge to represent chains:

• zc ∈ {0, 1}: 1 if cycle c is used in the matching, and 0 otherwise
• yek ∈ {0, 1}: 1 if edge e is used at position k in a chain, and 0 otherwise

Note that edges between an NDD n ∈ N and a patient-donor vertex v ∈ P may only take position 1 in a chain, while edges
between two patient-donor pairs may take any position 1, 2, . . . , L in a chain. For convenience, we define the function K for
each edge e, such that K(e) is the set of all possible positions that edge e may take in a chain.

K(e) =

{{1} e begins in n ∈ N
{1, 2, . . . , L} e begins in v ∈ P

We also use the following notation for flow into and out of vertices:

• δ−(s) and δ−(S): the set of edges into vertex s or set of vertices S
• δ+(s) and δ+(S): the set of edges out of vertex s or set of vertices S

The PICEF formulation is given in Problem (5).

max
∑
e∈E

∑
k∈K(e)

weyek +
∑
c∈C

wczc (5a)

s.t.
∑

e∈δ−(i)

∑
k∈K(e)

yek +
∑

c∈C:i∈c
zc ≤ 1 i ∈ P (5b)

∑
e∈δ+(i)

ye1 ≤ 1 i ∈ N (5c)

∑
e ∈ δ−(i)∧
k ∈ K(e)

yek ≥
∑

e∈δ+(i)

ye,k+1
i ∈ P
k ∈ {1, . . . , L− 1} (5d)

yek ∈ {0, 1} e ∈ E, k ∈ K(e) (5e)
zc ∈ {0, 1} c ∈ C (5f)

The Objective (5a) maximizes the total weight of a matching, defined by the cycle decision variables zc and edge variables
yek. Feasible matchings may only use each edge once, and must contain valid chains. Capacity constraints ensure that each edge
is used at most once:
The capacity constraints for each vertex are as follows:



• Constraint 5b: each patient-donor vertex i ∈ P may only participate in one cycle or one chain
• Constraint 5c: each NDD i ∈ N may only participate in one chain
Valid chains must begin in an NDD, and conserve flow through patient-donor pairs:

• Constraint 5d: a patient-donor vertex i ∈ P can only have an outgoing edge at position k + 1 in a chain if it has an incoming
edge at position k

In the next section we present the mixed integer linear program formulation for KEX(UIΓ), based on PICEF.

A.2 Our Robust Formulation
To simplify notation, letMP be the set of all feasible matchings for the PICEF formulation. The edge weight robust kidney
exchange problem KEX(UIΓ) is given in Equation (6).

max min
w∈UIΓ

∑
e∈E

∑
k∈K(e)

weyek +
∑
c∈C

wczc (6a)

s.t. (z,y) ∈MP (6b)

Proposition 1 states that this problem is identical to the robust formulation with one-sided uncertainty set UI1Γ —that is,
KEX(UIΓ) = KEX(UI1Γ ).

Proposition 1. The problems KEX(UIΓ) and KEX(UI1Γ ) are equivalent.

Proof. In KEX(UIΓ) (Problem 6), edge weights are minimized with respect to uncertainty set UIΓ. The objective is minimized
when up to Γ edge weights are reduced by the maximum amount within UIΓ (de), and one edge weight is reduced by (Γ−bΓc)de
. That is, KEX(UIΓ) only considers realized edge weights on the interval ŵe ∈ [we − de, we]. This is equivalent to restricting
αe to the interval [−1, 0] in UIΓ, which is equivalent to UI1Γ .

Thus we must solve Problem (7), with uncertainty set UI1Γ .

max min
w∈UI1Γ

∑
e∈E

∑
k∈K(e)

weyek +
∑
c∈C

wczc (7a)

s.t. (z,y) ∈MP (7b)

Next we develop a MILP formulation for Problem 7 by directly minimizing its Objective (7a). This minimum occurs when
bΓc edge weights are reduced by de, and one edge weight is reduced by (Γ − bΓc)de. For this reason we refer to de as the
discount value of edge e, and all edges that receive reduced weight in the robust matching are discounted.

For simplicity, we define a variable ŷe for each edge e ∈ E such that ŷe is 1 if edge e is used in the matching, and 0 otherwise.
Note that edge e is used in the matching if it is used in a chain (i.e. any yek = 1), or if it is used in a cycle (i.e. zc = 1 for any
cycle c containing e). Thus we define variables ŷe using the following constraint.∑

k∈K(e)

yek +
∑

c∈C:e∈c
zc = ŷe , e ∈ E

ŷe ∈ {0, 1}, e ∈ E

Next we minimize the Objective (7a)w.r.t. UI1Γ , by discounting up to Γ edges. Note that if only G < Γ edges are used in a
matching, only G edge weights may be discounted. Thus let Γ′ ≡ min{G,Γ} be the number of discounted edges, with

G =
∑
e∈E

ŷe,

the total number of edges used in the matching. To linearize the definition of Γ′ we introduce variable h, which is 1 if G < Γ and
0 otherwise. The statement Γ′ = min (G,Γ) can be linearized using the following constraints,

Γ−G ≤Wh

G− Γ ≤W (1− h)

G−Wh ≤ Γ′

Γ−W (1− h) ≤ Γ′

h ∈ {0, 1}



where W is a large constant.
The objective of Problem (7) is minimized the the Γ′ discounted edges are those with the largest discount value de. To select

these edges we introduce variables ge ∈ {0, 1} for each edge e ∈ E. Let m be the smallest de of any discounted edge—that is,
m is the dΓ′eth highest de of any edge used in the matching. We define ge as follows

ge =

{
1 if de ≥ m
0 otherwise

That is, ge is 0 if de is smaller than the dΓ′eth highest discount value of edges used in the matching, and 1 otherwise. We can
define these variables using linear constraints in two steps. First, note that variables ge and de must obey the same ordering
relation. That is, gi ≥ gj ⇔ di ≥ dj must hold for all i, j ∈ E, i 6= j. Note that variables de are constant, and can be sorted
during pre-processing. Let ≥d indicate this ordering relation.

Next we ensure that only Γ′ edges are discounted. Note that ŷe = 1 implies that edge e is used in the matching. Edge e should
be discounted if it is used in the matching, and if de is above the minimum discount value (that is, ge = 1). Thus, edge e should
be discounted if the following identity holds

geŷe = 1

Using this observation, we can ensure that exactly Γ′ edges are discounted with the following constraint,∑
e∈E

geŷe = Γ′.

For any feasible matchingM = (y, z), we can directly solve the minimization in Problem (7) by discounting the Γ′ edges used
inM with the largest discount values. This is accomplished using variables ge; Equation (8) gives the solution of this minimization
when Γ is integer, which is expressed as a function Z(y, z); the next section extends this formulation to accommodate non-integer
Γ.

Z(y, z) =
∑
e∈E

∑
k∈K(e)

weyek +
∑
c∈C

wczc −
∑
e∈E

gedeŷe (8a)

s.t.
∑

k∈K(e)

yek +
∑

c∈C:e∈c
zc = ŷe, e ∈ E (8b)

∑
e∈E

ŷe = G (8c)

Γ−G ≤Wh (8d)
G− Γ ≤W (1− h) (8e)

G−Wh ≤ Γ′ (8f)

Γ−W (1− h) ≤ Γ′ (8g)∑
e∈E

geŷe = Γ′ (8h)

ge, ŷe ∈ {0, 1}, e ∈ E (8i)
ga ≥d gb, a, b ∈ E, a 6= b (8j)
h ∈ {0, 1} (8k)

Note that this formulation contains two sets of quadratic terms: geyek for k ∈ K(e) for e ∈ E, and gezc for c ∈ C and e ∈ E.
We linearize these terms in the following section, after considering non-integer Γ.

Non-Integer Γ The number of discounted edges Γ′ may be integer or non-integer valued. When Γ′ is not integer valued, up to
bΓ′c edges are fully discounted by value de, and the edge with the smallest discount value is discounted by (Γ− bΓc)de. We
include this fractional discount by using two sets of indicator variables gfe and gpe for all e ∈ E, and then discount each edge e as
follows:

• e is fully discounted if gpe = gfe = 1.

• e is discounted by fractional amount (Γ− bΓc) if gfe = 0 and gpe = 1

• e is not discounted if gfe = gpe = 0.



Thus if Γ′ is integer, gfe = gpe for all e ∈ E; if Γ′ is not integer, then dΓ′e matching edges should be at least partially discounted
(gpe = 1), and bΓ′c matching edges should be fully discounted (gpe = gfe = 1). These indicator variables are defined in the same
way as ge in Equation (8): gfe , g

p
e ∈ {0, 1}, and they obey the same ordering relation as de. However, the number of matching

edges with gfe = 1 can be different than the number of edges with gpe = 1.
First note that dΓ′e matching edges must have gpe = 1. Recall that G is the number of matching edges, and Γ′ = min(Γ, G); if

Γ < G, then dΓ′e = dΓe, and otherwise dΓ′e = G. The variable h is defined to be 1 if G < Γ and 0 otherwise. Thus, we use the
following constraint to require that dΓ′e matching edges have gpe = 1:∑

e∈E
gpe ŷe = hG+ (1− h)dΓe.

Similarly, we can require that bΓ′c edges have gfe = 1 with the following constraint∑
e∈E

gfe ŷe = hG+ (1− h)bΓc.

Thus if G < Γ, then all G matching edges have gfe = gpe = 1; otherwise, there are dΓe matching edges with gpe = 1, and bΓc
matching edges with gfe = 1, where the matching edge with the smallest discount has gfe = 0 and gpe = 1.

Using these indicator variables, the new objective of the robust formulation is

max
∑
e∈E

∑
k∈K(e)

weyek +
∑
c∈C

wczc − (1− Γ + bΓc)
∑
e∈E

gfe deŷe

− (Γ− bΓc)
∑
e∈E

gpedeŷe

which discounts an edge e by weight de if gfe = gpe = 1, and by weight de (Γ− bΓc) if gfe = 0 and gpe = 1. Note that there are
two sets of quadratic terms in this problem: gfe ŷe and gpe ŷe for all e ∈ E. To linearize these terms we introduce the variables
ĝfe ≡ gfe ŷe and ĝpe ≡ gpe ŷe, which we define using the following constraints.

ĝfe ≤ gfe
ĝfe ≤ ŷe
ĝfe ≥ gfe + ŷe − 1

, e ∈ E

ĝfe ∈ {0, 1}, e ∈ E

ĝpe ≤ gpe
ĝpe ≤ ŷe
ĝpe ≥ gpe + ŷe − 1

, e ∈ E

ĝpe ∈ {0, 1}, e ∈ E
To linearize the term hG, we introduce variable ĝ ≡ hG, which is defined using the following constraints. As before, W is a

large constant.

ĥ ≤ hW
ĥ ≤ G
ĥ ≥ G− (1− h)W

ĥ ≥ 0

Finally, for any feasible matching M = (y, z), we can directly solve the minimization in problem 7 by discounting the Γ′

edges used in M with the largest discount values. This is accomplished using variables gfe and gpe ; Equation (9) gives the solution
of this minimization for general Γ > 0.

Z(y, z) =
∑
e∈E

∑
k∈K(e)

weyek +
∑
c∈C

wczc − (1− Γ + bΓc)
∑
e∈E

ĝfe de (9a)

− (Γ− bΓc)
∑
e∈E

ĝpede (9b)

s.t.
∑

k∈K(e)

yek +
∑

c∈C:e∈c
zc = ŷe, e ∈ E (9c)



∑
e∈E

ŷe = G (9d)

Γ−G ≤Wh (9e)
G− Γ ≤W (1− h) (9f)

G−Wh ≤ Γ′ (9g)

Γ−W (1− h) ≤ Γ′ (9h)∑
e∈E

ĝpe = ĥ+ (1− h)dΓe (9i)∑
e∈E

ĝfe = ĥ+ (1− h)bΓc (9j)

ĝfe ≤ gfe
ĝfe ≤ ŷe
ĝfe ≥ gfe + ŷe − 1

, e ∈ E (9k)

ĝpe ≤ gpe
ĝpe ≤ ŷe
ĝpe ≥ gpe + ŷe − 1

, e ∈ E (9l)

ĥ ≤ hW (9m)

ĥ ≤ G (9n)

ĥ ≥ G− (1− h)W (9o)

gpe , g
f
e , ŷe ∈ {0, 1}, e ∈ E (9p)

gfa ≥d gfb , a, b ∈ E, a 6= b (9q)

gpa ≥d gpb , a, b ∈ E, a 6= b (9r)

ĝpe , ĝ
f
e ∈ {0, 1}, e ∈ E (9s)
h ∈ {0, 1} (9t)

ĥ ≥ 0 (9u)

Equation (9) is the direct minimization of the Objective of KEX(UI1Γ ) (7a). Thus we directly apply this minimization solution
to the original Problem (7), to obtain the final linear formulation in Equation (10).

max
∑
e∈E

∑
k∈K(e)

weyek +
∑
c∈C

wczc − (1− Γ + bΓc)
∑
e∈E

ĝfe de (10a)

− (Γ− bΓc)
∑
e∈E

ĝpede (10b)

s.t.
∑

e∈δ−(i)

∑
k∈K(e)

yek +
∑

c∈C:i∈c
zc ≤ 1 i ∈ P (10c)

∑
e∈δ+(i)

ye1 ≤ 1 i ∈ N (10d)

∑
e ∈ δ−(i)∧
k ∈ K(e)

yek ≥
∑

e∈δ+(i)

ye,k+1
i ∈ P
k ∈ {1, . . . , L− 1} (10e)

∑
k∈K(e)

yek +
∑

c∈C:e∈c
zc = ŷe e ∈ E (10f)

∑
e∈E

ŷe = G (10g)

Γ−G ≤Wh (10h)
G− Γ ≤W (1− h) (10i)



G−Wh ≤ Γ′ (10j)

Γ−W (1− h) ≤ Γ′ (10k)∑
e∈E

ĝpe = ĥ+ (1− h)dΓe (10l)∑
e∈E

ĝfe = ĥ+ (1− h)bΓc (10m)

ĝfe ≤ gfe
ĝfe ≤ ŷe
ĝfe ≥ gfe + ŷe − 1

e ∈ E (10n)

ĝpe ≤ gpe
ĝpe ≤ ŷe
ĝpe ≥ gpe + ŷe − 1

e ∈ E (10o)

ĥ ≤ hW (10p)

ĥ ≤ G (10q)

ĥ ≥ G− (1− h)W (10r)

gfa ≥d gfb a, b ∈ E, a 6= b (10s)

gpa ≥d gpb a, b ∈ E, a 6= b (10t)
yek ∈ {0, 1} e ∈ E, k ∈ K(e) (10u)
zc ∈ {0, 1} c ∈ C (10v)

gpe , g
f
e , ŷe ∈ {0, 1} e ∈ E (10w)

ĝpe , ĝ
f
e ∈ {0, 1} e ∈ E (10x)
h ∈ {0, 1} (10y)

ĥ ≥ 0 (10z)

A.3 Solution Method for Constant Budget Γ
This section describes the algorithm for solving the edge-weight robust formulation in Section A.2, when it is unreasonable to
find all cycles in the exchange graph during preprocessing. We build on the cycle pricing method in Dickerson et al. (2016),
which in turn built on corrected versions of methods presented by Glorie et al. (2014) and Plaut et al. (2016).

This method begins by solving the LP relaxation of Problem (10) on a reduced model (using a small number of cycles), and
then identifying positive-price cycles—which may improve the solution—and adding these to the model. If no positive-price
cycles exist, then the solution is optimal on the reduced LP relaxation. This process is known as the pricing problem.

After optimizing the reduced LP relaxation, we proceed in one of two ways
1. If the solution is fractional, then we fix one of the fractional variables and branch, as in a standard branch-and-bound tree,
2. If the solution is integral, then it is the optimal solution to Problem (10).

This combination of cycle pricing and branch-and-bound is known as branch-and-price.
Algorithm 1 is the branch-and-price method for solving Problem (10). There are only two inputs to this algorithm: the kidney

exchange graph G, and the set of fixed decision variables XF . At each branch in the search tree, a new decision variable is fixed
to either 0 or 1 and added to XF . When both 1) no positive price cycles exist for reduced model M and solution X, and 2) the
solution X is integral, then X is returned.

The branch-and-price method in Algorithm 1 requires a cycle-pricing algorithm GetCycles. This algorithm either returns
positive-price cycles—using the reduced model M and the current solution to the LP relaxation, X—or determines that none
exist. We adapt the cycle-pricing algorithm usesd by Dickerson et al. (2016) to solve the PICEF formulation, which is based on
(Glorie et al. 2014) and (Plaut et al. 2016). These algorithms calculate the price pc of cycle c as

pc =
∑
e∈c

(we − δv)

where we is the weight of edge e in cycle c, and δe is the dual value of the vertex where e ends. In the edge-weight robust
problem, each edge e may receive its nominal weight we or its discounted weight (we − de). It is not obvious whether the
nominal or discounted weights should be used during cycle pricing.

To illustrate this problem, assume we know the optimal solution X to Problem (10), and the set of cycles C used in X. We
consider two methods for cycle pricing.



ALGORITHM 1: BranchAndPrice
input :G,XF

output :Optimal Matching X
Generate subset of cycles C′, in G;
Create reduced model M, with cycles C′;
X← Solve LP relaxation of M ;
C+ ← CyclePrice(G,X);
while C+ 6= ∅ do

Add cycles C+ to M;
X← solve LP relaxation of M;
C+ ← CyclePrice(G,X);

end
if X is fractional then

Find fractional binary variable Xi ∈ X closest to 0.5;
BranchAndPrice(G,XF ∪ (Xi = 0));
BranchAndPrice(G,XF ∪ (Xi = 1));

else
return X

1. Calculate cycle prices using discounted edge weights (we − de).
Assume that, for some cycle c ∈ C, none of the edges in c are discounted in X. During branch-and-price, it may occur
that—before adding c to the reduced model—the following inequalities hold∑

e∈c
(we − de − δv) ≤ 0∑
e∈c

(we − δv) > 0

If discounted edge weights are used during pricing, c appears to have negative price—and will not be added to the reduced
model. In this case, the calculated price is incorrectly negative, branch-and-price may return a sub-optimal solution.

2. Calculate cycle prices using nominal edge weights we.
Assume that, for some cycle c′ 6∈ C, all of the edges in c′ are discounted when it is added to the reduced model. It may occur
that the following inequalities hold: ∑

e∈c′
(we − de − δv) ≤ 0∑
e∈c′

(we − δv) > 0

In this case, using nominal edge weights for cycle pricing will incorrectly determine that c′ has a positive price, and will add
c′ to the reduced model.
Neither of these methods is ideal—using discounted weights can result in a sub-optimal solution, while using nominal weights

adds cycles to the reduced model. Instead, we calculate cycle prices using discounted edge weights only for edges that will
be discounted in any matching, and nominal edge weights for all other edges. As discussed in Section A.2, up to Γ edges are
discounted in every solution to Problem (10); these are the edges with the largest discount values de. For any exchange graph
with |E| edges, the min(Γ, |M |) edges with the largest discount values are always discounted if they are used in a solution to
Problem (10). Algorithm 2 describes this method, which uses the cycle pricer of (Glorie et al. 2014) as a subroutine. Proposition
2 states that this method never incorrectly determines that a cycle has negative price—and therefore never results in a sub-optimal
solution.
Proposition 2. Algorithm 2 never determines that a positive-price cycle has a negative price.

A.4 Solution Method for Variable Budget γ
In this section we describe a method for solving the edge-weight robust kidney exchange problem with variable budget,
KEX(UI1γ ). Theorem 2 is a direct adaptation of Theorem 4 of (Poss 2014) to the edge-weight uncertain kidney exchange
problem, which states that the solution of KEX(UI1γ ) can be found by solving several cardinality-restricted instances of
KEX(UI1Γ ).



ALGORITHM 2: CyclePrice
input :G = (V,E),X
output :Cycle Prices
d∗ ← Γth highest discount value de in E;

w∗e ←

{
we − de if de ≥ d∗

we otherwise
;

return PositivePriceCycles(G,L,X, w∗e), the cycle pricer from (Glorie et al. 2014)

Theorem 2. Let M be the set of feasible matchings, with edge decision variables x ∈ M ⊂ {0, 1}|E|. The solution to
KEX(UI1γ ) can be found by solving |E| cardinality-restricted instances of KEX(UI1Γ ),

max min
ŵ∈UIΓ

x · ŵ

s.t. x ∈M
‖x‖ ≤ k
Γ = γ(k)

with k = 1, . . . , |E|, and taking the maximum-weight solution.

The proof of this theorem is identical to the proof of Theorem 4 in Poss (2014), and is omitted here. In practice, feasible
matchings use far fewer than |E| edges, and thus many fewer than |E| instances of KEX(UI1Γ ) must be solved. Algorithm
3 describes our method for solving KEX(UI1γ ), which first finds the maximum cardinality matching, and then solves each
cardinality-restricted problem KEX(UI1Γ ).

ALGORITHM 3: EdgeWeightRobust-γ
input :Function γ, exchange graph G
output :Optimal matching x
Find the maximum cardinality matching xC ;
for k ← 1 to ‖xC‖ do

Γ← γ(k);
x∗k ← solution to KEX(UI1Γ ), restricting cardinality to k;

end
return The maximum-weight matching in {x∗k}

B Edge Existence Robust Formulation
In this section we develop an edge existence robust formulation for kidney exchange, using uncertainty set UwΓ . Our approach
is based on a formulation introduced by Anderson et al. (2015), which adapts a formulation of the prize-collecting traveling
salesman problem (PC-TSP). For simplicity, we use the abbreviation KEX(U) to refer to the robust kidney exchange problem,
with uncertainty set U .

B.1 PC-TSP Formulation
We begin by overviewing the PC-TSP method proposed by Anderson et al. (2015); it is based on a method for solving the
prize-collecting traveling salesman problem (PC-TSP) introduced by Balas (1989). We use a version of the PC-TSP formulation
with a finite chain cap; the uncapped formulation is much more compact. (Due to high failure rates, most fielded exchanges
incorporate a finite maximum length of chains. That cap can be quite high, e.g., 20 or more, but is typically not allowed to float
freely with parts of the input size, e.g., |V |.) This formulation is especially useful because it allows us to define decision variables
equal to each chain weight used in the matching, without explicitly enumerating all possible chains.

This formulation uses all of the same parameters as PICEF:

• G: kidney exchange graph, consisting of edges e ∈ E and vertices v ∈ V = P ∪N , including patient-donor pairs P and
NDDs N .

• C: a set of cycles on exchange graph G.

• L: chain cap (maximum number of edges used in a chain).

• we: edge weights for each edge e ∈ E.



• wCc : cycle weights for each cycle c ∈ C, defined as wCc =
∑
e∈c we.

PC-TSP uses one decision variable for each cycle (zc) and each edge (ye), and several auxiliary decision variables that help
define the constraints:

• zc ∈ {0, 1}: 1 if cycle c is used in the matching, and 0 otherwise.
• ye ∈ {0, 1}: 1 if edge e is used in a chain, and 0 otherwise.
• yne ∈ {0, 1}: 1 if edge e is used in a chain starting with NDD n, and 0 otherwise.
• wNn (auxiliary): total weight of the chain starting with NDD n.
• f iv and fov (auxiliary): chain flow into and out of vertex v ∈ P , respectively.
• f i,nv and f i,nv (auxiliary): chain flow into and out of vertex v ∈ P , respectively, from a chain beginning with NDD n ∈ N .

The PC-TSP formulation with chain cap L is given in Problem 12. As before, we use the notation δ−(v) for the set of edges
into vertex v and δ+(v) for the set of edges out of v.

max
∑
n∈N

wNn +
∑
c∈C

wCc zc (12a)

s.t.
∑
e∈E

wey
n
e = wNn n ∈ N (12b)∑

n∈N
yne = ye e ∈ E (12c)∑

e∈δ−(v)

ye = f iv v ∈ V (12d)

∑
e∈δ+(v)

ye = fov v ∈ V (12e)

∑
e∈δ−(v)

yne = f i,nv v ∈ V, n ∈ N (12f)

∑
e∈δ+(v)

yne = fo,nv v ∈ V, n ∈ N (12g)

fov +
∑

c∈C:v∈c
zc ≤ f iv +

∑
c∈C:v∈c

zc ≤ 1 v ∈ P (12h)

fov ≤ 1 v ∈ N (12i)∑
e∈δ−(S)

ye ≥ f iv S ⊆ P, v ∈ S (12j)

∑
e∈E

yne ≤ L n ∈ N (12k)

fo,nv ≤ f i,v ≤ 1 v ∈ V, n ∈ N (12l)
ye ∈ {0, 1} e ∈ E (12m)
zc ∈ {0, 1} c ∈ C (12n)
yne ∈ {0, 1} e ∈ E,n ∈ N (12o)

The objective 12a maximizes the total weight of a matching, defined by the cycle decision variables zc and edge decision
variables ye. The auxiliary variables are defined using the following constraints:

• Constraint 12b: defines wNn .
• Constraint 12c: defines ye, using yne .
• Constraints 12d and 12e: define auxiliary variables f iv and fov .
• Constraints 12f and 12g: define auxiliary variables f i,nv and fo,nv .

There is only one capacity constraint for each patient-donor vertex and each NDD:

• Constraint 12h: each patient-donor vertex v may only be used in one cycle c; or, if v is used in a chain, chain flow out of v can
only be nonzero if there is chain flow out of v.



• Constraint 12i: each NDD n may only start one chain.

The follow constraints ensure that chain flow is conserved, and enforce the chain cap L:

• Constraint 12k: chains can use no more than L edges.
• Constraint 12l: chain flow out of v can only be nonzero if there is chain flow out of v. This constraint is equivalent to 12h, but

for variables fo,nv .

The final constraints ensure that each chain includes an NDD. These are very similar to the generalized subtour elimination
constraints in the TSP literature.

• Constraint 12j: for every subset S of the donor-patient vertices, each vertex in S can only participate in a chain if there is
chain flow into S.

The number of constraints in 12j grows exponentially with the number of patient-donor vertices, so it is necessary to use
constraint generation with the PC-TSP formulation. We avoid constraint generation by developing a new formulation, which
draws on concepts of both PC-TSP and PICEF; this formulation is introduced in the following section.

B.2 Our PI-TSP Formulation
In this section we present the new position-indexed PC-TSP formulation (PI-TSP), which combines concepts from both the
PC-TSP formulation and the PICEF formulation. The main advantage of our approach is in the formulation of chains. PC-TSP
uses a fixed number of decision variables to allow long (or uncapped) chains, but requires constraint generation. PICEF does not
require constraint generation, but the number of decision variables grows polynomially with the chain cap.

Our approach achieves the best of both worlds: PI-TSP uses a fixed number of decision variables for any chain cap, and does
not require constraint generation. To our knowledge, ours is the first formulation to exhibit this behavior.

PI-TSP uses the same parameters as PICEF and PC-TSP:
• G: kidney exchange graph, consisting of edges e ∈ E and vertices v ∈ V = P ∪N , including patient-donor pairs P and

NDDs N .
• C: a set of cycles on exchange graph G.
• L: chain cap (maximum number of edges used in a chain).
• we: edge weights for each edge e ∈ E.
• wCc : cycle weights for each cycle c ∈ C, defined as wCc =

∑
e∈c we.

PI-TSP also uses the same decision variables (and auxiliary variables) as PC-TSP. Two additional variables are added to the
formulation: pe, pv ≥ 1 for each edge e ∈ E and patient-donor vertex v ∈ P , to represent e and v’s position in a chain.

• pe ≥ 1: the position of edge e in any chain.
• pv ≥ 1: the position of patient-donor vertex v in any chain (equal to the position of any incoming edge).
• p̂e ≥ 0: equal to pe if e is used in a chain, and 0 otherwise. (i.e. p̂e = pe · ye)
• zc ∈ {0, 1}: 1 if cycle c is used in the matching, and 0 otherwise.
• ye ∈ {0, 1}: 1 if edge e is used in a chain, and 0 otherwise.
• yne ∈ {0, 1}: 1 if edge e is used in a chain starting with NDD n, and 0 otherwise.
• wNn (auxiliary): total weight of the chain starting with NDD n.
• f iv and fov (auxiliary): chain flow into and out of vertex v ∈ P , respectively.
• f i,nv and f i,nv (auxiliary): chain flow into and out of vertex v ∈ P , respectively, from a chain beginning with NDD n ∈ N .

The PI-TSP formulation with chain cap L is given in Problem 13. As before, we use the notation δ−(v) for the set of edges
into vertex v and δ+(v) for the set of edges out of v.

max
∑
n∈N

wNn +
∑
c∈C

wCc zc (13a)

s.t.
∑
e∈E

wey
n
e = wNn n ∈ N (13b)∑

n∈N
yne = ye e ∈ E (13c)∑

e∈δ−(v)

ye = f iv v ∈ V (13d)



∑
e∈δ+(v)

ye = fov v ∈ V (13e)

∑
e∈δ−(v)

yne = f i,nv v ∈ V, n ∈ N (13f)

∑
e∈δ+(v)

yne = fo,nv v ∈ V, n ∈ N (13g)

fov +
∑

c∈C:v∈c
zc ≤ f iv +

∑
c∈C:v∈c

zc ≤ 1 v ∈ P (13h)

fov ≤ 1 v ∈ N (13i)

pe = 1 e ∈ δ+(N) (13j)
p̂e = peye e ∈ E (13k)

pv =
∑

e∈δ−(v)

p̂e v ∈ P (13l)

pe = pv + 1 v ∈ P, e ∈ δ+(v) (13m)∑
e∈E

yne ≤ L n ∈ N (13n)

fo,nv ≤ f i,v ≤ 1 v ∈ V, n ∈ N (13o)
ye ∈ {0, 1} e ∈ E (13p)
zc ∈ {0, 1} c ∈ C (13q)
yne ∈ {0, 1} e ∈ E,n ∈ N (13r)

All constraints are identical to those of PC-TSP, but without the subtour elimination constraints 12j, and with the addition of
the following constraints:

• Constraints 13j: sets pe = 1 for all edges out of NDD vertices.

• Constraints 13k: defines p̂e.

• Constraints 13l: for all vertices v, sets pv equal to the variable pe of any incoming edge.

• Constraints 13m: for all outgoing edges of all vertices v, sets pe = pv + 1.

Two adjustments may be made to this formulation: first, the variables pv are not necessary, but are useful for illustration. We
can remove these variables by combining Constraints 13l and 13m as follows:

pe = 1 +
∑

e∈δ−(v)

p̂e v ∈ P, e ∈ δ+(v)

Second, Constraints 13k are nonlinear; we linearize these by replacing 13k with the following constraints for each e ∈ E:

p̂e ≤ yeM
p̂e ≤ pe

pe − (1− ye)M ≤ p̂e
Experiments: Minimum Chain Length We demonstrate the utility of the PI-TSP formulation by finding optimal matchings
with a minimum chain length (Lmin). We set a maximum chain length of Lmax = 3, and vary the Lmin from 0 to 3. For some
exchange graph, let |MOPT | be the score of the optimal matching (i.e. with no minimum chain length, and maximum chain
length 3); we calculate the fractional optimality gap for the matching Ml (with score |Ml|), which has minimum chain length
Lmin = l. We define ∆OPT (Ml) as

∆OPT (Ml) =
|Ml| − |MOPT |
|MOPT |

We calculate optimal matchings for Lmin = 0, 1, 2, 3, for each of the UNOS exchange graphs used in Section 5. Only 154 of the
roughly 300 UNOS graphs contain chains; the remaining graphs may have no NDDs, or the NDDs may have no feasible donors.
Focusing on these 154 graphs, we calculate ∆OPT and the chain lengths of each optimal matching, for each Lmin. Figure 4
shows histograms of ∆OPT and the chain lengths for all optimal matchings, for each Lmin = 0, 1, 2, 3. Note that ∆OPT is
zero for Lmin = 0, by definition.
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Figure 4: ∆OPT (top row) and chain lengths (bottom row) for the optimal matchings with minimum chain length Lmin, and
maximum chain length of 3.

For some of these exchanges, a minimum chain length of 2 or 3 was infeasible (58 for Lmin = 2, and 77 for Lmin = 3, out of
154 total exchanges); we do not consider these cases.

As expected, enforcing Lmin > 0 results in longer chains – such that when Lmin = Lmax = 3, all chains have length 3.
Surprisingly, enforcing a minimum chain length does not impact the overall matching score. Indeed, even when Lmin = 3, 70%
of all matchings have a zero optimality gap. However these experiments did not consider edge failures. As discussed in Section 4,
edge failures impact long cycles and chains more than short cycles and chains; in practice, when edges have a nonzero failure
probability, setting a high Lmin makes the matching more susceptible to failure (i.e. less robust).

B.3 Edge Existence Robust Formulation
In this section we develop a mixed integer linear program formulation for the edge existence robust kidney exchange (KEX(UwΓ )).
This problem maximizes the matching score while minimizing the objective with respect to realized cycle and chain weights
ŵM

c for the current matching M . We develop an edge-existence robust formulation by directly minimizing the PI-TSP Objective
(13a) over all cycle and chain weight realizations in UwΓ . For brevity, letMP be the set of all possible feasible solutions to the
PI-TSP formulation; we represent these feasible solutions as (y, z) ∈M, where y are the edge decision variables for chains,
and z are the cycle decision variables.

For any feasible solution (y, z) ∈ MP , we find the minimum objective value for any realized cycle and chain weights in
UwΓ With some abuse of notation, this minimum is represented by the function Z(y, z). In this section we separate the realized
weights ŵc into the realized cycle weights ŵC

c and the realized chain weights ŵN
c .

Z(y, z) = min
(ŵC

c ,ŵ
N
c )∈UwΓ

∑
n∈N

ŵNn +
∑
c∈C

ŵCc zc

Note that maximizing Z(y, z) is equivalent to solving KEX(UwΓ ) – the robust kidney exchange problem with uncertainty set
KEX(UwΓ ). The following lemma states that this is equivalent to solving the constant-budget edge existence robust kidney
exchange problem KEX(UEΓ ).

Lemma 1. KEX(UEΓ ) is equivalent to KEX(UwΓ )

Proof. Consider a feasible matchingM = (zc, ye). The only difference betweenKEX(UEΓ ) andKEX(UwΓ ) is the minimization
of the objective over uncertainty sets UEΓ and UwΓ respectively.

Problem KEX(UEΓ ) minimizes the matching weight over edge subsets Ê ⊆ E, where R = E \ Ê contains up to Γ edges:

• If Γ = 1, the largest decrease in matching weight occurs if the highest weight cycle or chain is discounted – that is, if R
contains the first edge in the highest weight chain, or any edge in the highest weight cycle.



• Similarly if Γ = 2, the largest decrease in matching weight occurs when the two highest-weight cycles and chains are
discounted.

Thus, for any positive Γ and any feasible matchingM , the minimum objective inKEX(UEΓ ) occurs when the Γ highest-weight
cycles and chains in M are discounted.

In KEX(UwΓ ), for any Γ and any feasible matching M , the minimum occurs (trivially) when the Γ highest-weight cycles or
chains are discounted in UwΓ .

For any matching M , minimizing the KEX objective over UE and UwΓ produce the same outcome – the Γ highest-weight
cycles and chains are discounted. Thus, the minimization in KEX(UE) and KEX(UwΓ ) is equivalent.

Thus, to solve the constant-budget edge existence robust kidney exchange problem, we can solve Problem (14) – which
maximizes Z(y, z) over all feasible matchings (y, z) ∈MP .

max Z(y, z) (14a)

(y, z) ∈MP (14b)

We proceed by solving Problem (14), which is equivalent to KEX(UwΓ ). To solve this problem we first develop a linear
formulation for Z using the PC-TSP decision variables, and then we maximize this linear expression.

B.4 Linear Formulation for Z
In this section we minimize the function Z for any matching (y, z) ∈MP , within uncertainty set UwΓ . Within this uncertainty
set, up to bΓc cycles and chains can have zero realized weight (i.e. ŵc = 0), and if Γ is not integer, then one cycle or chain will
have realized weight equal to the fraction (Γ− bΓc) of its total nominal weight (i.e. ŵc = (Γ− bΓc)wc. We say that any cycle
or chain c with ŵc < wc is discounted.

First note that if a matching uses G cycles and chains, and G < Γ, only G objects are discounted. Thus let Γ′ = min{G,Γ}
be the number of discounted cycles and chains, i.e.,

G =
∑
c∈C

zc +
∑
n∈N

∑
e∈δ+(n)

ye.

To linearize the definition of Γ′, we introduce variable h, which is 1 if G < Γ and 0 otherwise. The statement Γ′ = min{G,Γ}
is linearized using the following constraints:

Γ−G ≤Wh

G− Γ ≤W (1− h)

G−Wh ≤ Γ′

Γ−W (1− h) ≤ Γ′

h ∈ {0, 1}
where W is a large constant.

The function Z is minimized w.r.t. the realized weights, when the Γ′ discounted cycles and chains are those with the largest
weight. To select these objects we introduce variables gCc , g

N
n ∈ {0, 1} for each cycle c ∈ C and each chain’s NDD n ∈ N . For

any matching, let m be the smallest weight of any discounted cycle or chain – that is, m is the dΓ′eth highest weight of any cycle
or chain used in the matching. We define gCc and gNn as follows

gCc =

{
1 if wCc ≥ m
0 otherwise

gNn =

{
1 if wNn ≥ m
0 otherwise

Thus gCc = 1 or gNn = 1 implies that cycle c or chain n should be discounted if used in the matching. We define these variables
using linear constraints, in two steps. First, we require that g{C,N}j = 1 only if g{C,N}k = 1 for all cycles and chains k with weight

larger than w{C,N}j . That is, we require that variables g{C,N} obey the same ordering as w{C,N}. This ordering requirement can
be defined using the following correspondences

gCi ≥ gCj ⇔ wCi ≥ wCj , i, j ∈ C (15)

gCc > gNn ⇔ wCc > wNn , c ∈ C, n ∈ N (16)

gCc ≤ gNn ⇔ wCc ≤ wNn , c ∈ C, n ∈ N (17)

gNi ≥ gNj ⇔ wNi ≥ wNj , i, j ∈ N (18)



Note that cycle weights are fixed but chain weights depend on the decision variables. Thus we determine ordering relation 15 by
sorting all cycle weights during preprocessing, and enforcing this ordering over gCi using the relation ≥C , defined as

≥C=
{

(gCa , g
C
b ) ∈ gC × gC | wCa ≥ wCb

}
.

Using this notation, the ordering relation ≥C contains all pairs of cycles (a, b) such that wCa ≥ wCb . For simplicity, I will denote
this ordering relation as

a ≥C b.

This ordering relation is enforced on variables gCi using (|C| − 1) constraints. The ordering required by correspondence 16, 17,
and 18 depend on the chain weights, which in turn depend on decision variables. We can linearize these correspondences using
the following inequalities

gCc + qcn ≥ gNn
W (1− qcn) ≥ wCc − wNn

gNn + (1− qcn) ≥ gCc
Wqcn ≥ wNn − wCc

qcn ∈ {0, 1}, c ∈ C, n ∈ N,

Where W is a large constant. When wCc > wNn , this forces qcn to be 0; as a result, the inequality gCc ≥ gNn must hold. Otherwise,
if wCc < wNn , this forces qcn to be 1, which forces the inequality gNn ≥ gCc to hold.

Similarly, the following constraints enforce the ordering in correspondence 18 over variables gNn

gNi + qNij ≥ gNj
W (1− qNij ) ≥ wNi − wNj

gNj + (1− qNij ) ≥ gNi
WqNij ≥ wNj − wNi

qNij ∈ {0, 1}, i, j ∈ N, i 6= j

Next we require that only Γ′ objects are discounted. Note that if cycle c is discounted if gCc w
C
c = 1, and chain n is discounted

if gNn
∑
e∈E

yne = 1. Thus, the following identity requires that exactly Γ objects are discounted:

∑
c∈C

zcg
C
c +

∑
n∈N

gNn
∑

e∈δ+(n)

ye = Γ′

We use these variables to directly minimize Z(y, z) w.r.t. UwΓ , and the result is given in Equation (19).

Z(y, z) =
∑
n∈N

wNn +
∑
c∈C

wczc −
∑
n∈N

gNn w
N
n −

∑
c∈C

gCc wczc (19a)

s.t. Γ−G ≤Wh (19b)
G− Γ ≤W (1− h) (19c)

G−Wh ≤ Γ′ (19d)

Γ−W (1− h) ≤ Γ′ (19e)

gCc + qcn ≥ gNn
W (1− qcn) ≥ wCc − wNn

gNn + (1− qcn) ≥ gCc
Wqcn ≥ wNn − wCc

, c ∈ C, n ∈ N (19f)



gNi + qNij ≥ gNj
W (1− qNij ) ≥ wNi − wNj

, qNij ∈ {0, 1}, i, j ∈ N, i 6= j (19g)∑
c∈C

zcg
C
c +

∑
n∈N

gNn
∑

e∈δ+(n)

ye = Γ′ (19h)

gCi ≥C gCj , i, j ∈ C, i 6= j (19i)

qcn ∈ {0, 1}, c ∈ C, n ∈ N, (19j)
h ∈ {0, 1} (19k)

Note that there are two sets of quadratic expressions in this formulation: gCc zc, and wNn g
N
n . These are linearized in the next

section, which addresses non-integer Γ.

B.5 Non-Integer Γ

When Γ is not integer, the actual number of discounted cycles and chains (Γ′) may be integer or non-integer valued. When Γ′

is not integer valued, up to bΓ′c cycles and chains are fully discounted (i.e. ŵc = 0), and the smallest-weight cycle or chain
is discounted by fraction (Γ − bΓc). We include this fractional discount by using two sets of indicator variables f{C,N}i and
p
{C,N}
i for all cycles and chains i ∈ C ∪N , and then discount each i as follows:

• i is fully discounted if p{C,N}i = f
{C,N}
i = 1.

• i is partially discounted fraction (Γ− bΓc) if f{C,N}i = 0 and p{C,N}i = 1

• i is not discounted if f{C,N}i = p
{C,N}
i = 0.

Thus if Γ′ is integer, f{C,N}i = p
{C,N}
i for all cycles and chains i; if Γ′ is not integer, then dΓ′e cycles and chains are least

partially discounted (p{C,N}e = 1), and bΓ′c cycles and chains are fully discounted (p{C,N}i = gfi = 1). These indicator variables
are defined in the same way as g{C,N}i in Equation (19): p{C,N}i , f

{C,N}
i ∈ {0, 1}, and they obey the same ordering relation as

the cycle and chain weights. However, the number of cycles and chains with f{C,N}i = 1 can be different than the number of
cycles and chains with with p{C,N}i = 1. Thus we add new constraints for each of these variables.

Setting the number of discounted cycles and chains. First we require dΓ′e cycles and chains have p{C,N}i = 1. Recall that
G is the number of matching edges, and Γ′ = min(Γ, G); if Γ < G, then dΓ′e = dΓe, and dΓ′e = G otherwise. The variable h
is defined to be 1 if G < Γ and 0 otherwise. Thus, the following constraint requires that dΓ′e cycles and chains have p{C,N}i = 1:∑

n∈N
pNn

∑
e∈δ+(n)

ye +
∑
c∈C

pCc zc = hG+ (1− h)dΓe.

Similarly, the following constraint requires that bΓ′c cycles and chains have f{C,N}i = 1:∑
n∈N

fNn
∑

e∈δ+(n)

ye +
∑
c∈C

fCc zc = hG+ (1− h)bΓc.

Thus if G < Γ, then all G cycles and chains will have f{C,N}i = p
{C,N}
i = 1; otherwise, there are dΓe cycles and chains with

p
{C,N}
i = 1, and bΓc cycles and chains with f{C,N}i = 1, where the partially-discounted cycle or chain has f{C,N}i = 0 and
p
{C,N}
i = 1.

Ordering relation over indicator variables. To enforce the ordering relation over indicator variables fNn , pNn , fCc , and pCc ,
we use constraints similar to those used in the edge weight robust formulation. The auxiliary variables qcn and qNij are defined
the same way here: qcn is 0 when wCn > wNn and 1 otherwise; qNij is 0 if

fCc + qcn ≥ fNn
pCc + qcn ≥ pNn

fNn + (1− qcn) ≥ fCc
pNn + (1− qcn) ≥ pCc

W (1− qcn) ≥ wCc − wNn
Wqcn ≥ wNn − wCc

, c ∈ C, n ∈ N,



qcn ∈ {0, 1}, c ∈ C, n ∈ N,

Where W is a large constant. When wCc > wNn , this forces qcn to be 0; as a result, the inequality fCc ≥ fNn and pCc ≥ pNn must
hold. Otherwise, if wCc < wNn , this forces qcn to be 1, which forces the inequality fNn ≥ fCc and pNn ≥ pCc to hold.

Similarly, the following constraints enforce the ordering in correspondence 18 over variables fNn and pNn

fNi + qNij ≥ fNj
pNi + qNij ≥ pNj

fNj + (1− qNij ) ≥ fNi
pNj + (1− qNij ) ≥ pNi

WqNij ≥ wNj − wNi
W (1− qNij ) ≥ wNi − wNj

, i, j ∈ N, i 6= j

qNij ∈ {0, 1}, i, j ∈ N, i 6= j

As before, correspondence 15, the ordering between cycle indicator variables, is enforced using the pre-determined ordering
≥C .

fCa ≥C fCb
pCa ≥C pCb

, a, b ∈ C, a 6= b

Objective for non-integer Γ. Using these indicator variables, the new objective of the robust formulation is

max
∑
n∈N

wNn +
∑
c∈C

wczc − (1− Γ + bΓc)
(∑
n∈N

wNn f
N
n +

∑
c∈C

fCc wczc

)

− (Γ− bΓc)
(∑
n∈N

wNn p
N
n +

∑
c∈C

pCc wczc

)

which discounts cycle or chain i by its full weight if f{C,N}i = p
{C,N}
i = 1, and by fraction (Γ− bΓc) of its weight if

f
{C,N}
i = 0 and p{C,N}i = 1.

Non-linear terms. There are now 7 types of nonlinear terms in this formulation:

• hG,

• wNn fNn ,

• wNn pNn ,

• zcfCc ,

• zcpCc ,

• fNn ye, and

• pNn ye.
First we linearize the chain-related quadratic terms by introducing the variables f̂Nn ≡ wNn fNn and p̂Nn ≡ wNn pNn . The following
constraints define these new variables, using a large constant W .

f̂Nn ≤ fNn W
f̂Nn ≤ wNn
f̂Nn ≥ wNn − (1− fNn )W

,n ∈ N

f̂Nn ≥ 0, n ∈ N



p̂Nn ≤ pNnW
p̂Nn ≤ wNn
p̂Nn ≥ wNn − (1− pNn )W

,n ∈ N

p̂Nn ≥ 0, n ∈ N

Next we define variables f̂Cc ≡ zcfCc and p̂Cc ≡ zcpCc using the following constraints.

f̂Cc ≤ fCc
f̂Cc ≤ zc
f̂Cc ≥ fCc + zc − 1

, c ∈ C

f̂Cc ∈ {0, 1}, c ∈ C

p̂Cc ≤ pCc
p̂Cc ≤ zc
p̂Cc ≥ pCc + zc − 1

, c ∈ C

p̂Cc ∈ {0, 1}, c ∈ C

To linearize the term hG, we introduce variable ĝ ≡ hG, which is defined using the following constraints. As before, W is a
large constant.

ĥ ≤ hW
ĥ ≤ G
ĥ ≥ G− (1− h)W

ĥ ≥ 0

Finally, we introduce the variables Fn ≡ fNn
∑

e∈δ+(n)

ye and Pn ≡ pNn
∑

e∈δ+(n)

ye, defined with the following constraints. Note

that for each NDD n ∈ N the sum of all ye variables is either zero (if n does not initiate a chain) or 1 (if n initiates a chain).
Thus Fn and Pn are products of binary variables, which we define using the following constraints.

Fn ≤ fNn
Fn ≤ ∑

e∈δ+(n)

ye

Fn ≥ ∑
e∈δ+(n)

ye + fNn − 1
, c ∈ C

Fn ∈ {0, 1}, n ∈ N

Pn ≤ pNn
Pn ≤ ∑

e∈δ+(n)

ye

Pn ≥ ∑
e∈δ+(n)

ye + pNn − 1
, n ∈ N

Pn ∈ {0, 1}, n ∈ N

Linear formulation. Finally, for any feasible matching we directly minimize Z by discounting the Γ′ largest-weight cycles
and chains. This is accomplished using the variables f̂Nn , p̂Nn , f̂Cc , p̂Cc . Equation (20) gives the minimization of Z for any
matching (y, z) , using only linear constraints.

Z(y, z) =
∑
n∈N

wNn +
∑
c∈C

wczc − (1− Γ + bΓc)
( ∑
n∈N

f̂Nn +
∑
c∈C

f̂Cc wc

)
−(Γ− bΓc)

( ∑
n∈N

p̂Nn +
∑
c∈C

p̂Cc wc

) (20a)



s.t.

Γ−G ≤Wh
G− Γ ≤W (1− h)

G−Wh ≤ Γ′

Γ−W (1− h) ≤ Γ′

(20b)

∑
n∈N

Pn +
∑
c∈C

p̂Cc = ĥ+ (1− h)dΓe (20c)∑
n∈N

Fn +
∑
c∈C

f̂Cc = ĥ+ (1− h)bΓc (20d)

fCc + qcn ≥ fNn
pCc + qcn ≥ pNn

fNn + (1− qcn) ≥ fCc
pNn + (1− qcn) ≥ pCc

W (1− qcn) ≥ wCc − wNn
Wqcn ≥ wNn − wCc

, c ∈ C, n ∈ N (20e)

fNi + qNij ≥ fNj
pNi + qNij ≥ pNj

fNj + (1− qNij ) ≥ fNi
pNj + (1− qNij ) ≥ pNi

WqNij ≥ wNj − wNi
W (1− qNij ) ≥ wNi − wNj

, i, j ∈ N, i 6= j (20f)

fCa ≥C fCb
pCa ≥C pCb

, a, b ∈ C, a 6= b (20g)

f̂Nn ≤ fNn W
f̂Nn ≤ wNn
f̂Nn ≥ wNn − (1− fNn )W

, n ∈ N (20h)

p̂Nn ≤ pNnW
p̂Nn ≤ wNn
p̂Nn ≥ wNn − (1− pNn )W

, n ∈ N (20i)

f̂Cc ≤ fCc
f̂Cc ≤ zc
f̂Cc ≥ fCc + zc − 1

, c ∈ C (20j)

p̂Cc ≤ pCc
p̂Cc ≤ zc
p̂Cc ≥ pCc + zc − 1

, c ∈ C (20k)

ĥ ≤ hW
ĥ ≤ G
ĥ ≥ G− (1− h)W

ĥ ≥ 0

(20l)

Fn ≤ fNn
Fn ≤ ∑

e∈δ+(n)

ye

Fn ≥ ∑
e∈δ+(n)

ye + fNn − 1
, c ∈ C (20m)

Pn ≤ pNn
Pn ≤ ∑

e∈δ+(n)

ye

Pn ≥ ∑
e∈δ+(n)

ye + pNn − 1
, n ∈ N (20n)



f̂Cc , p̂
C
c ∈ {0, 1}, c ∈ C (20o)

f̂Nn , p̂
N
n ≥ 0, n ∈ N (20p)

Fn ∈ {0, 1}, n ∈ N (20q)
Pn ∈ {0, 1}, n ∈ N (20r)

qNij ∈ {0, 1}, i, j ∈ N, i 6= j (20s)

qcn ∈ {0, 1}, c ∈ C, n ∈ N (20t)
h ∈ {0, 1} (20u)

The linear formulation for KEX(UwΓ ) is obtained by adding the PI-TSP constraints to Problem (20), and mazimizing the
objective 20a.

This linear formulation can be solved by any standard solver; our experiments use Gurobi (Gurobi Optimization, Inc. 2018).

C Robustness as Fairness
In this section we use the framework of edge weight uncertainty to address the problem of fairness in kidney exchange. Though
seemingly unrelated, fairness and uncertainty share some key characteristics. The concept of budgeted uncertainty balances
the nominal objective value with the worst case. A similar trade-off exists between fairness and efficiency in kidney exchange:
allocating kidneys to hard-to-match patients is fair, but often reduces the number of possible transplants.

C.1 The Price of Fairness
In kidney exchange, fairness often pertains to highly-sensitized patients, who are very unlikely to find a compatible donor.
Highly-sensitized patients face longer waiting times than lowly-sensitized patients4. In part this is because highly sensitized
patients are hard to match; for this reason most kidney exchange optimization algorithms – which maximize matching size or
weight – marginalize highly-sensitized patients.

A patient’s sensitization level is measured by her Calculated Panel Reactive Antibody (CPRA) score, which ranges from 0 to
100. Patient-donor pair vertices in the exchange graph are highly-sensitized if the pair’s patient has a CPRA score above some
threshold τ , which is set by policymakers (τ = 80 is common). Let VH (VL) be the set of highly-sensitized (lowly-sensitized)
vertices in P , and let EH (EL) be the set of all edges that end in VH (VL).

Fairness for a matching M is often quantified using the utility assigned to VH and VL – i.e. the sum of edge weights into each
vertex set,

UH(M) =
∑
e∈EH

xewe, UL(M) =
∑
e∈EL

xewe.

The utilitarian utility function is defined as u(M) = UH(M) +UL(M) (i.e. the total edge weight of matching M ). We might
define a fair utility function uf :M→ R, such that the matching M∗f that maximizes uf is considered fair:

M∗f = arg max
M∈M

uf (M)

Fairness is quantified using the fraction of the fair score %F : M,M→ [0, 1] – i.e. the fraction of the maximum possible
utility awarded to highly sensitized patients

%F (M,M) = UH(M)/ max
M ′∈M

UH(M ′).

Bertsimas et al. (2011b) defines the price of fairness as the “relative system efficiency loss under a fair allocation assuming
that a fully efficient allocation is one that maximizes the sum of [participant] utilities.” Thus the price of fairness is defined using
the set of matchingsM, the fair utility function uf , and the utilitarian utility function u:

POF(M, uf ) =
u (M∗)− u

(
M∗f

)
u (M∗)

(21)

POF(M, uf ) is the relative loss in (utilitarian) efficiency caused by choosing the fair outcome M∗f rather than the most
efficient outcome.

Balancing %F and POF is a key problem in kidney exchange. Achieving a high degree of fairness (high %F ) often incurs
a high POF; on the other hand, requiring a low POF ofen results in low %F . Dickerson et al. (2014) propose two rules for
enforcing fairness in kidney exchange, and demonstrate that without chains, the price of fairness is low in theory. McElfresh and
Dickerson (2018) extended this result, finding that adding chains lowers the theoretical price of fairness – eventually to zero;
they also propose a fairness rule that limits the price of fairness.

In the next section we generalize one of the fairness rule proposed by Dickerson et al. (2014) using the framework of budgeted
robust optimization, and demonstrate its versatility in balancing fairness and efficiency.

4https://optn.transplant.hrsa.gov/data/



C.2 Fairness Through Robustness
In this section we adapt the concept of budgeted uncertainty to apply budgeted prioritization to highly sensitized patients in
kidney exchange. To prioritize certain patients over others, we assign each edge e ∈ E a priority weight ŵe ∈ [0,∞), equal to
the nominal weight multiplied by a factor (1 + αe), with αe ∈ [−1,∞). There are many ways to prioritize highly sensitized
vertices using priority weights: we may set α > 0 for all edges in EH , or we may set α = −1 for edges in EL, and so on.

To balance fairness with efficiency it reasonable to limit the degree of prioritization. To limit prioritization, we define a
budgeted prioritization set P , which bounds the sum of absolute differences between each we and ŵe; this prioritization set is
given in Equation (22).

PΓ =

{
ŵ | ŵe = we(1 + αe), αe ∈ [−1,∞],

∑
e∈E

αewe ≤ Γ

}
(22)

To prioritize VH , we define αe differently for each edge e. In one type of approach, we prioritize VH by setting αe to a constant
(α) for all e ∈ EH . This approach is given by P+

Γ , in Equation (23)

P+
Γ =

{
ŵ | ŵe =

{
we(1 + α) if e ∈ EH
we otherwise

, α ≥ 0, α
∑
e∈E

we ≤ Γ

}
(23)

A different type of approach prioritizes VH by reducing all edges into EL; this approach is given by P−Γ , in Equation (24).

P−Γ =

{
ŵ | ŵe =

{
we(1− α) if e ∈ EL
we otherwise

, α ∈ [0, 1], α
∑
e∈E

we ≤ Γ

}
(24)

To apply prioritization to kidney exchange, we either minimize or maximize the kidney exchange objective with respect to P .
By choosing αe and prioritization budget Γ, this general framework can implement a wide variety of prioritization requirements.
Next we show how budgeted prioritization generalizes a previous fairness rule.

C.3 Weighted Fairness
Weighted fairness was proposed by Dickerson et al. (2014) to prioritize highly sensitized patients in kidney exchange. This
fairness rule maximizes the total matching weight, after multiplying all edge weights into highly sensitized patients by a factor
(1 + γ), where parameter γ is set by policymakers. Weighted fairness is equivalent to maximizing the kidney exchange objective
over the budgeted prioritization set Pw, given below. This prioritization set is equivalent to P+

Γ , with prioritization budget Γ
equal to γ times the total weight received by highly sensitized patients.

Pwγ =

{
ŵ | ŵe =

{
we(1 + α) if e ∈ EH
we otherwise

, α ≥ 0, α
∑
e∈EH

we ≤ γ
∑
e∈EH

we

}
(25)

Note that the uncertainty budget does not depend on edge weights, and can be written succinctly as Equation (26).

Pwγ =

{
ŵ | ŵe =

{
we(1 + α) if e ∈ EH
we otherwise

, 0 ≤ α ≤ γ
}

(26)

Weighted fairness is implemented by maximizing over priority set Pwγ , as in Problem (27)

max max
ŵ∈Pwγ

ŵ · xe (27a)

x ∈M (27b)

Proposition 3. γ-weighted fairness is equivalent to maximizing the kidney exchange objective over Pwγ .

As demonstrated in Equation (25), weighted fairness uses the prioritization budget Γ = γ
∑

e∈EH
we, which is proportional to

the weight received by highly sensitized patients. Thus, we may derive an upper bound on the POF for γ-weighted fairness.

Proposition 4. For γ-weighted fairness, and some matching M the price of fairness for choosing matching M is bounded above
by

POF(uwγ ,M) ≤ γ

1 + γ + UL(M)/UH(M)
.



Proof. Suppose that γ-weighted fairness chooses matching M over a higher-weight matching E. In the worst case, both F and
E receive nearly the same priority weight under γ-weighted fairness (within a small perturbation ε). Let the utility awarded by
each outcome to highly- and lowly-sensitized patients be given by

UH(M) = A UL(M) = B
UH(E) = 0 UL(E) = A(1 + γ) +B − ε

with 0 < ε � 1. Both M and E receive nearly the same priority weight from γ-weighted fairness, but E receives γA more
weight than M :

uwγ (M) = A(1 + γ) +B

uwγ (E) = A(1 + γ) +B − ε
And thus γ-weighted fairness selects M over E. Taking the limit as ε→ 0, the price of fairness for choosing M is

POF(uwγ ,M) =
A(1 + γ) +B − ε−A−B

A(1 + γ) +B − ε =
γ

1 + γ +B/A
,

note that A = UH(M) and B = UL(M), and thus

POF(uwγ ,M) =
γ

1 + γ + UL(M)/UH(M)
.

Note that this is the worst-case POF for choosing M , and thus

POF(uwγ ,M) ≤ γ

1 + γ + UL(M)/UH(M)
.

It follows that this POF is maximized when UL(M) = 0, which is the worst case POF for γ-weighted fairness.
Corollary 1. For γ-weighted fairness, the price of fairness is bounded above by

POF(uwγ ) ≤ γ

1 + γ

Proposition 5. Let U∗H be the maximum possible utility for highly-sensitized patients. For γ-weighted fairness, and some
matching M the fraction of the fair score %F for matching M is bounded below by

%F (M,M) ≥ 1− UL(M)

U∗H

1

1 + γ
.

Proof. Let M ∈ mM be a feasible matching, and let U∗H be the maximum possible utility for highly-sensitized patients.
Consider the worst case scenario for γ-weighted fairness: two outcomes receive nearly equal utility from γ-weighted fairness,
but the outcome chosen is far less fair. Let the fair outcome F assign the maximum possible utility to highly sensitized patients,
and zero utility to lowly sensitized patients:

uH(F ) = U∗H , uL(F ) = 0.

Let M be the outcome selected by γ-weighted fairness, which assigns utility βUH(M) to highly sensitized patients, with
0 < β < 1, and some utility A+ ε to lowly sensitized patients, with 0 < ε� 1:

uH(M) = βU∗H , uL(M) = A+ ε,

and note that β is %F , the fraction of the fair score, for outcome M .
Letting ε→ 0, both F and M receive the same utility under γ-weighted fairness; that is,

U∗H(1 + γ) = βU∗H(1 + γ) + UL(M).

Rearranging, we have

%F (M,M) = β = 1− UL(M)

U∗H

1

1 + γ
.

This is the worst-case outcome for %F , and thus

%F (M,M) ≥ β = 1− UL(M)

U∗H

1

1 + γ
.



It follows that the worst-case %F occurs when UL is maximal, and M = M∗.
Corollary 2. Let U∗H and U∗L be the maximum possible utility for highly- and lowly-sensitized patients, respectively. Under
γ-weighted fairness, the fraction of the fair score %F is bounded below by

%F (∗,M) ≥ 1− U∗L
U∗H

1

1 + γ
.

These results may be used to balance %F and POF, subject to policymaker requirements. For example, suppose policymakers
require that %F ≥ f , and POF ≤ p, for some constants f and p. If we know the maximum utility for highly- and lowly-
sensitized patients, we can bound γ using the worst-case bounds from Corollary 1 and 2. Inverting the bounds from these
Corollaries with p = POF and f = %f , we have

γ ≤ p

1− p , γ ≥ U∗L
U∗H

1

1− f − 1.

Combining these restrictions, we arrive at the bounded prioritization set Pfp , given in Equation (28).

Pfp =

{
ŵ | ŵe =

{
we(1 + γ) if e ∈ EH
we otherwise

,
U∗L
U∗H

1

1− f − 1 ≤ γ ≤ p

1− p

}
(28)

There are two important observations about this prioritization set. First, not all choices of f and p are valid, and this depends on
U∗L/U

∗
H ; that is, choosing either f or p necessarily bounds the other. Second, there are many ways to use Pfp in practice: we

might minimize or maximize ŵ before maximizing the kidney exchange objective (i.e., setting γ to its maximum or minimum
value; this is equivalent to the weighted fairness proposed by Dickerson et al. (2014).

Alternatively, we might allow γ to vary within the range of set by Pfp . This approach allows the optimization algorithm to
choose the value of γ, such that priority weight is maximized. Note that this is not equivalent to weighted fairness (Problem (27)),
which maximizes priority weight before maximizing the objective. This variable-γ approach is given in Problem (29).

max
ŵ∈Pfp

∑
e∈E

ŵe · xe

x ∈M
By directly applying the definition of ŵ to this problem, we arrive at Problem (30).

max (1 + γ)
∑
e∈EH

we · xe +
∑
e∈EL

we · xe (30a)

U∗L
U∗H

1

1− f − 1 ≤ γ ≤ p

1− p (30b)

x ∈M (30c)

In the next section we tighten this the bound on %F for γ-weighted fairness, by relaxing the bounds on γ.

Variable Weighted Fairness The bounds in Corollary 1 and 2 are for the worst-case bounds on γ; however, the worst-case
scenarios that produce these bounds may never occur. Instead, we use Proposition 4 and 5 to bound γ for some feasible matching
M .

As before, suppose that policymakers require that %F ≥ f , and POF ≤ p, for some constants f and p. If we know the
maximum utility for highly-sensitized patients, we can bound γ (for some matching M ) using the worst-case bounds from
Proposition 4 and 5. Inverting these bounds with p = POF and f = %f , we have

γ ≤ p

1− p

(
1 +

UL(M)

UH(M)

)
, γ ≥ UL(M)

U∗H

1

1− f − 1.

Applying these bounds on γ results in the following prioritization set Pfp , given in Equation (31).

Pfp =

{
ŵ | ŵe =

{
we(1 + γ) if e ∈ EH
we otherwise

,
UL(M)

U∗H

1

1− f − 1 ≤ γ ≤ p

1− p

(
1 +

UL(M)

UH(M)

)}
(31)

As before, we might maximize or minimize the prioritization weight over Ppf (i.e., weighted fairness), or allow γ to vary within
the range of Ppf . Note that allowing γ to vary adds variable inequalities, which depends on the decision variables of M .


