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Abstract

Kidney exchange is a type of barter market where pa-
tients exchange willing but incompatible donors. These
exchanges are conducted via cycles—where each in-
compatible patient-donor pair in the cycle both gives
and receives a kidney—and chains, which are started
by an altruist donor who does not need a kidney in re-
turn. Finding the best combination of cycles and chains
is hard. The leading algorithms for this optimization
problem use either branch and price—a combination
of branch and bound and column generation—or con-
straint generation. We show a correctness error in the
leading prior branch-and-price-based approach [Glorie
et al. 2014]. We develop a provably correct fix to it,
which also necessarily changes the algorithm’s com-
plexity, as well as other improvements to the search
algorithm. Next, we compare our solver to the lead-
ing constraint-generation-based solver and to the best
prior correct branch-and-price solver. We focus on the
setting where chains have a length cap. A cap is desir-
able in practice since if even one edge in the chain fails,
the rest of the chain fails: the cap precludes very long
chains that are extremely unlikely to execute and instead
causes the solution to have more parallel chains and cy-
cles that are more likely to succeed. We work with the
UNOS nationwide kidney exchange, which uses a chain
cap. Algorithms from our group autonomously make
the transplant plans for that exchange. On that real data
and demographically-accurate generated data, our new
solver scales significantly better than the prior leading
approaches.

1 Introduction
Chronic kidney disease is a worldwide problem affecting, at
various levels of severity, tens of millions of people at great
societal burden (Neuen et al. 2013) and monetary cost (Saran
et al. 2015). For those with end-stage kidney failure—of
which there are over 100,000 in the US alone1—the pro-
curement of a new healthy kidney is a life-saving necessity.

Cadaveric kidneys fulfill only a fraction of the demand
for kidneys; indeed, the imbalance in supply and demand
is growing. Living donation, where a willing donor with two
healthy kidneys gives one organ to a patient with kidney fail-
ure, is even more desirable than deceased donation; grafts
sourced in this manner generally last twice as long as cadav-
eric grafts in the recipient’s body (HHS/HRSA/HSB/DOT
2011). Finding a feasible living donor is difficult due to med-
ical compatibility and other logistical issues. Toward this
end, kidney exchange (Rapaport 1986; Roth, Sönmez, and
Ünver 2004) is a market where patients with willing but in-
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compatible donors swap their paired donors, thus allowing
participants to circumvent these compatibility issues.

In this paper, we address kidney exchange from a compu-
tational point of view. Specifically, given a set of incompati-
ble pairs of patients and donors, we are interested in comput-
ing the “best” set of feasible organ trades, which take place
in cycles or unpaired donor-initiated chains. This problem is
both theoretically and empirically hard to solve (Abraham,
Blum, and Sandholm 2007). Over the last decade, integer
programming-based methods for solving different interpre-
tations of the kidney exchange problem have been developed
and then used in fielded exchanges. As kidney exchange
matures, holes in the expressiveness and scaling capabili-
ties of the current solvers are found, and improvements are
made. We are actively involved in this feedback loop with
the United Network for Organ Sharing (UNOS) US nation-
wide kidney exchange, and draw on that experience here.

The two leading kidney exchange clearing algorithms,
due to Glorie et al. (2014) and Anderson et al. (2015b), ad-
dress the optimization problem from complementary direc-
tions. We begin by identifying a bug in the correctness of
the former algorithm, and give a provably correct fix that
also necessarily changes its runtime complexity. We then in-
corporate the (corrected) idea of Glorie et al. (2014) into an
improved version of the prior best branch-and-price-based
solver, based on work by Abraham et al. (2007). On real
data from the UNOS exchange and on demographically-
accurate generated data, our new solver scales dramatically
better than both prior approaches when a finite cap on the
length of chains is imposed, as is the case in practice. Al-
ready on reasonably-sized instances, our method optimally
clears markets that the prior methods cannot solve at all.

2 Preliminaries
Any barter exchange can be represented as a directed graph
G = (V,E), such that each participating agent is a ver-
tex and directed edges between vertices represent potential
trades from one agent to another. In the kidney exchange
case, such a compatibility graph can be formed by construct-
ing one vertex for each patient-donor pair in the pool (Roth,
Sönmez, and Ünver 2004; 2005a; 2005b). Then, each di-
rected edge e from vertex u to vertex v represents a potential
medically-compatible transplant from the donor at u to the
patient at v. The donor in u is willing to give her kidney if
and only if her paired patient receives a kidney. Some poten-
tial transplants are more valuable than others. With this in
mind, each edge e = (u, v) is assigned a real-valued weight
w(e); we will also use the notation w(u, v).

A cycle c of vertices in the compatibility graph G repre-
sents a possible kidney swap, with each vertex in the cycle
obtaining the kidney of the previous vertex. In kidney ex-



change, cycles of length at most some small constant L are
allowed—all transplants in a cycle must be performed si-
multaneously so that no donor backs out after his patient has
received a kidney but before he has donated his kidney. In
most fielded kidney exchanges—including at UNOS—only
2- and 3-cycles are allowed (i.e., L = 3).

Some donors in kidney exchange enter the pool without
a paired patient. These non-directed donors (aka “altruist
donors”) trigger chains that start with that donor donating
her kidney to a patient, whose paired donor donates his kid-
ney to another patient, and so on (Montgomery et al. 2006;
Roth et al. 2006; Rees et al. 2009). In recent years, chains
have surpassed cycles as the primary matching mode in
many fielded exchanges. The set of patient-donor pairs P
and the set of altruist donors A partition the vertex set V .

Chains can be longer than cycles in practice because it
is not necessary to carry out all the transplants in a chain
simultaneously. Unlike in cycles, if a donor backs out of
a chain after his paired patient receives a kidney, no pair
in the remainder of the planned chain is strictly worse off;
that is, no donor was “used up” before his or her paired pa-
tient receiving a kidney. Yet, within a single planning period,
longer chains are generally less likely to execute than shorter
chains,2 and are less desirable in practice. Fielded kidney ex-
changes typically impose a single-period chain-length cap
K to avoid very long chains that are extremely unlikely to
execute in practice and instead causes the solution to have
more parallel chains and cycles that are more likely to suc-
ceed. At UNOS, K = 4. Planned chains longer than 4 are
very unlikely to execute because the success rate of every
individual edge tends to be less than a third (Dickerson, Pro-
caccia, and Sandholm 2013).3

Finally, a matching M is any collection of disjoint cy-
cles and chains in the graph G. The cycles and chains must
be disjoint because no donor can give more than one of her
kidneys. Given the set of all legal matchingsM, the clear-
ing problem is to find a matching M∗ that maximizes some
utility function u : M → R. Common fielded utility func-
tions are cardinality- or weight-based, while ongoing work
explores incorporating other dimensions (Chen et al. 2012;
Dickerson, Procaccia, and Sandholm 2013; Anderson 2014;
Manlove and O’Malley 2014; Dickerson and Sandholm
2015; Glorie et al. 2015). For finite cycle cap L > 2 (even
without chains), even the maximum cardinality problem is
NP-hard (Abraham, Blum, and Sandholm 2007).

In this paper, we build a fast clearing engine to optimally
solve the maximum-cardinality and maximum-weighted
clearing problems on realistic kidney exchange graphs. The
first serious computational approach to solving the kid-
ney exchange problem built a specialized branch-and-price-

2For an overview based on real UNOS data of edge, cycle, and
chain failure rates and reasons, see §7 of Dickerson et al. (2013).

3At the end of a chain is a donor that has not donated yet, and
that donor can be used as an altruist in the next batch match (Rees
et al. 2009) (e.g., at UNOS, there are two batches per week). This
way chains can be continued from batch to batch, and the chains
become long that way. In the US, kidney exchange chains have
sometimes grown to be 60 long. Note that this in no way contradicts
the motivation for the within-batch chain-length cap.

based (Barnhart et al. 1998) integer program solver (Abra-
ham, Blum, and Sandholm 2007); we discuss that method
in Section 3, and build on it. Section 3 also discusses the
leading non-branch-and-price-based solver, due to Anderson
et al. (2015b); that uses a sophisticated recursive traveling-
salesman-inspired constraint generation process. The cur-
rent fastest branch-and-price-based technique is due to Glo-
rie et al. (2014); we discuss that method, identify a bug in its
correctness, and propose and prove the correctness of a fix
in Section 4. (We discuss solver implementation details in
Appendix C.) Finally, in Section 5, we provide extensive ex-
perimental results comparing the original branch-and-price-
based solver (Abraham, Blum, and Sandholm 2007), our
new solver that incorporates the (now correct) ideas of Glo-
rie et al. (2014) and other improvements, and the leading
constraint-generation-based solver (Anderson et al. 2015b).
We show on both real data from the UNOS kidney exchange
and on demographically-accurate data that our solver scales
dramatically better than the prior best solvers for realistic
values of K and L; indeed, already on moderately-sized
compatibility graphs, our solver provides optimal clearing
results while the other solvers provide no solution due to ex-
cessive run time.

3 Optimally Clearing Large Barter Markets
In this section, we briefly overview the two leading ap-
proaches to solving integer program (IP) models of the kid-
ney exchange clearing problem.4 Models solved by branch
and price use one binary decision variable for each legal cy-
cle and chain, while those solved by constraint generation
use a combination of binary decision variables representing
edges and cycles—but not chains. In Section 5, we com-
pare two branch-and-price-based solvers and one constraint-
generation-based solver; we define their basic structure here.

Branch and price
Given a set of vertices V = P ∪ A, the number of cycles
of length at most L is O(|P |L), the number of uncapped
chains is exponential in |P | if A 6= ∅, and the number of
capped chains of length at most K is O(|A||P |K−1). Let
C(L,K) represent the set of cycles of length at most L
and chains of length at most K. With one decision vari-
able per cycle and chain c ∈ C(L,K), an integer program
model cannot even be written to main memory—much less
solved—for even moderately-sized graphs. Indeed, Abra-
ham et al. (2007) could not write down the full model for
instances as small as 1000 patient-donor pairs for C(3, 0),
while Dickerson et al. (2012b) could not write down the full
model for instances as small as 256 pairs with just 10 al-
truists for C(3, 4). Thus, any solver must maintain at most a
reduced model (i.e., subset of columns and rows in the con-
straint matrix) in memory.

Branch and price is a combination of standard branch and
bound with column generation that searches for and proves
the optimality of a solution to an integer program while
maintaining only a reduced model in memory (Barnhart et

4For an in-depth survey of integer programming approaches to
the kidney exchange problem, see Mak-Hau (2015).



al. 1998). For kidney exchange, the idea is as follows (Abra-
ham, Blum, and Sandholm 2007). (We will loosely refer
to cycles and chains only as cycles, because they are rep-
resented as decision variables in the model, and because a
chain is equivalent to a cycle with an additional “dummy”
zero-weight back-edge to an altruist donor.) First, start with
some relatively small number of, or no, “seed” cycle vari-
ables in the model, and solve the linear program (LP) relax-
ation of this reduced model. Next, generate positive price
cycles—variables that might improve the solution when
brought into the model. For the maximum-weight clearing
problem, the price of a cycle c is given by

∑
(u,v)∈c w(u,v)−

δu, where δu is the dual value of vertex u in the LP.
The pricing problem is to generate one or more positive

price cycles to bring into the model, or prove that none ex-
ist. While any positive price cycles exist at the current node
in the branch and bound search tree, optimality has not been
proven for the LP. Solving the pricing problem can be ex-
pensive in its own right, as we discuss in Section 4. Once
there are no more positive price cycles, if the LP solution is
integral, optimality is proved at that node in the search tree.
However, if the LP is fractional, branching occurs. Abra-
ham et al. (2007) branched on individual cycles c, creating
one subtree that includes c in the final solution and a second
subtree that explicitly does not, and recursing in this way.
Our solver necessarily uses more complex branching, as de-
scribed later. These branches are then explored in depth-first
order until a provably optimal solution is found.

Constraint generation
Constraint-generation-based approaches to kidney exchange
have all variables of the appropriate model in memory from
the start, but bring in the constraints of the model incre-
mentally. A basic constraint generation form of the kidney
exchange problem uses a decision variable for each edge
(i.e., only O(|V |2) variables) in the compatibility graph and
solves a flow problem such that unit flow into a vertex exists
if and only if unit flow out of that vertex also exists (Abra-
ham, Blum, and Sandholm 2007). This relaxed form of the
full problem with only a polynomial number of constraints
will not obey cycle or chain caps, so constraints of that form
are added until an optimal solution to the relaxed problem is
also feasible with respect to cycle and chain caps.

Anderson et al. (2015b) built the leading constraint-
generation-based IP solver for the kidney exchange problem.
Their solver builds on the prize-collecting traveling salesper-
son problem (Balas 1989), where the problem is to visit each
city (patient-donor pair) exactly once, but with the additional
option to pay some penalty to skip a city. They maintain de-
cision variables for all cycles of length at most L, but build
chains in the final solution from decision variables associ-
ated with individual edges. Then, an exponential number of
constraints is required to prevent the solver from including
chains of length greater than K; these are generated incre-
mentally until optimality is proved.

In this paper, we focus on three instantiations of kidney
exchange clearing engines: BNP-DFS, the initial branch-
and-price-based solver due to Abraham et al. (2007); CG-
TSP, the leading constraint-generation-based approach due

to Anderson et al. (2015b); and BNP-POLY, a new solver we
built that combines the (now corrected by us) methodology
of Glorie et al. (2014) with other improvements. The next
section discusses this new solver.

4 Efficiently Solving the Pricing Problem
In the branch-and-price approach, solving the pricing
problem—that is, finding a positive price cycle or set of cy-
cles, or proving that none exist—is performed at every node
in the branch-and-bound search tree. Thus speedups in pric-
ing can result in dramatic overall runtime gains. In this sec-
tion, we discuss pricing methods for the kidney exchange
problem. We show that the current leading pricing algorithm
is incorrect, and describe our fix for that problem.

Exponential-time pricing
The first branch-and-price-based IP solver for the kidney ex-
change problem solved the pricing problem by exhaustively
considering all feasible cycles and chains, relative to the cur-
rent partial solution represented by the search tree (Abra-
ham, Blum, and Sandholm 2007). At each node, an ex-
haustive depth-first-search (DFS) in the compatibility graph
computes the price for all cycles until up to a user-specified
maximum number of positive cycles are found, or until the
search proves that no positive price cycles exist. That proof
of nonexistence necessarily sometimes explores all cycles
and chains (of capped length) in G which, as discussed in
Section 3, is untenably slow. Indeed, for long chains in pools
with many non-directed donors, the pricing problem cripples
the BNP-DFS performance, as we show in Section 5.

Polynomial-time pricing
We discuss a recent polynomial-time pricing algorithm due
to Glorie et al. (2014), find a problem with it, and then pro-
pose a fix and prove its correctness.

Method of Glorie et al. (2014). Glorie et al. (2014) give
an algorithm that solves the pricing problem (for many kid-
ney exchange functions) in polynomial time. We show that
the method is incorrect, after briefly describing the idea be-
hind it. Fortunately, the idea—once corrected—is excellent,
as we show experimentally in Section 5.

Glorie et al. (2014) reduce the problem of generating pos-
itive price cycles to finding negative weight cycles in a di-
rected graph. They construct a “reduced” graph with the
same vertices and edges, but with different weights on the
edges. If e = (u, v) is an edge in the original graph with
weight we, and δu is the dual value of vertex u, its weight
re in the reduced graph is given by re = δu − we. Thus, a
cycle is positive price in the original graph if and only if it is
a negative cycle in the reduced graph.

The next step is to efficiently find negative cycles of
length at most L for cycles, or K for chains. We will use
parentheses to denote a path, and angular brackets to denote
a cycle. For example, (v1, v2...vn) is a path from vertex v1 to
vn, while 〈v1, v2...vn〉 is a cycle containing the above path,
plus the edge (vn, v1). Glorie et al. note the following: sup-
pose there is a path (v1, v2, . . . , vn) of reduced weight r1,



and an edge e = (vn, v1) with reduced weight r2. Then if
r1 + r2 < 0, 〈v1, v2, . . . , vn〉 is a negative cycle.

Thus, efficiently finding short paths of length at most L or
K in the reduced graph also finds positive price cycles in the
compatibility graph. Hereafter, we use “short” and “long” to
refer to the weight of path, not its edge count. In general,
the shortest path in a graph with negative edge weights is
undefined due to the ability to repeat a negative weight cycle
multiple times in a single path. Since a path in our context
is not valid if it reuses edges, the problem is well-defined.
Yet, finding the shortest path is NP-hard via reduction from
the Hamiltonian path problem: set all edge weights to −1
and ask if the shortest path from a source u to any neighbor
v such that (u, v) ∈ E is of weight 1 − |V |. However, the
pricing procedure need only find some—not necessarily the
shortest—negative weight cycle or prove nonexistence.

The Bellman-Ford algorithm5 is ideally suited to this. As
Glorie et al. (2014) note, the ith step of Bellman-Ford com-
putes shortest paths using at most i edges; however, some
edges in those paths may be reused by way of reusing neg-
ative sub-cycles in the path. To prevent confusion between
the kidney exchange cycles and these sub-cycles in the re-
duced graph, we refer to sub-cycles as “loops.” In Glorie et
al., nothing is done to prevent the creation of loops. Internal
loops can be removed to recover a valid path, but this may
increase the weight of the path above zero. While pursuing
that path, the Bellman-Ford algorithm might have ignored a
different path that was less promising at the time, but had
no internal loops, and would have ended up being a valid
negative chain or cycle. This leads to cases where the algo-
rithm returns no negative cycles even though they exist, as
demonstrated in Counterexample 1. This causes the overall
branch-and-price algorithm to sometimes fail to find an opti-
mal solution, and instead report a suboptimal one as optimal.
Counterexample 1. Consider the graph with reduced
weights in Figure 1, and let the cycle cap L = 3 and
chain cap K = 6. Vertex a is the only altruist, while
vertices p1, . . . , p8 are patient-donor pairs. The only valid
negative cycle or chain in the above graph is the chain
〈a, p5, p6, p7, p8, p1〉. Since there are no cycles of length at
most L = 3, no negative cycles will be found on any run
of Bellman-Ford where vertex a is not the source. Thus, we
only consider the case where a is the source.

a p1 p2

p3p4

p5

p7p6 p8

00 0

0

0

-2
0

0 0

-1

Figure 1: Counterexample to Glorie et al. pricing method.
Let d(u) be the distance from vertex a to vertex u. Af-

ter four steps, d(p4) = 0 via the path (a, p1, p2, p3), and
d(p8) = 0 via (a, p5, p6, p7). On the fifth and final (because
K = 6) step, d(p1) updates via p4 through an internal loop,
as d(p4) + w(p4, p1) = −2 < −1 = d(p8) + w(p8, p1).
Thus, the path (a, p5, p6, p7, p8, p1) is ignored.

At the termination of Bellman-Ford, d(p1) = −2, with
path (a, p1, p2, p3, p4, p1) stored as its list of predecessors.

5Cormen et al. (2009) overview the Bellman-Ford algorithm.

Because this is negative, Bellman-Ford tries to generate the
corresponding negative chain (equivalent to a positive price
chain in the compatibility graph) by following its prede-
cessors. After removal of the internal loop at vertex p1,
the chain weight is no longer negative. However, the path
(a, p5, p6, p7, p8, p1) was ignored in favor of the path to ver-
tex p1 by way of p4. That path corresponds to a positive price
chain in the compatibility graph but is not returned.

Corrected polynomial-time pricing. Counterexample 1
breaks the correctness of the solver presented in Glorie et
al. (2014), but is amenable to a simple fix: prevent looping
during the Bellman-Ford iterations, not as a post-process af-
terwards. To prevent looping, before updating the distance to
some vertex v via the edge (u, v), we perform an additional
check through the predecessors of u. If v already occurs in
the path to u, this would create a loop; if this occurs, we do
not update the distance to v.

Assuming K > L, the complexity of the algorithm given
by Glorie et al. is O(|V ||E|K): Bellman-Ford runs from
each vertex for K or L steps and examines O(|E|) edges at
each step. Our modification adds an extra factor of K, since
on each update, we now have to examine up to O(K) prede-
cessors. This yields an overall complexity of O(|V ||E|K2).

Pseudocode for the full method is given in Appendix B,
and implementation details are given in Appendix C. Proofs
of correctness follow as Theorem 1 (proof in Appendix A)
and Theorem 2.

Theorem 1. Any cycle returned by the algorithm has nega-
tive weight (i.e., has a positive price).

Theorem 2. If there is a negative cycle in the graph, the
algorithm will return at least one negative cycle.

Proof. We will show that if there is a negative cycle c that
we do not find, there must exist a negative cycle with strictly
fewer vertices. Thus, for any negative cycle c that we do
not return, there must exist a negative cycle p∗q∗ with fewer
vertices. So, there exists a negative cycle with no negative
cycles smaller than it, which our algorithm finds and returns.

Say c = 〈v1, v2, . . . , vn〉 is that negative cycle that we do
not return. Without loss of generality, assume that c contains
the shortest path from v1 to vn; if it does not, then that cycle
containing the shortest path is also a negative cycle.

Consider running the modified Bellman-Ford method
with v1 as the source. Since by assumption the algorithm
does not find c, it must compute a different path from v1 to
vn than the one in c. We know that the computed path is not
shorter, since c contains the shortest path to vn. Without loss
of generality, assume it is strictly longer; were it equal in
length, we would be done (as this is a negative cycle that is
found by the algorithm as well).

The only way our modified Bellman-Ford method does
not compute the shortest path to vn is if there exists some
vertex vsplit, where vsplit ∈ c, but the shortest path to vsplit
is not in c. This can occur due to the modification that pre-
vents loops in shortest paths. Let p be the shorter path from
v1 to vsplit, and let pc be the path from v1 to vsplit in c. Let
q be the path from vsplit to vn in c, plus the edge (vn, v1).
This is shown in Figure 2.



v1 vsplit vn

pc

p

q \ (vn, v1)

(vn, v1) This edge is part of q.

Figure 2: Widget with a negative cycle and existence of a
shorter negative cycle. Dotted arrows are paths that contain
zero or more vertices (and thus one or more edges).

Then c = pcvsplitq. Also, since the weights on the paths are
w(p) < w(pc), we have w(pq) < w(pcq) = w(c) < 0.

For any path ρ, let |ρ| represent the number of vertices in
that path. We know that c = pcq satisfies the cycle size cap,
since it is valid by assumption.

Claim: |p| ≤ |pc|
Proof: By way of contradiction, assume |pc| < |p|. Then,
the sequence of updates along pc will reach vsplit before p
does—which means we will have computed pc. Even though
we may compute p later, we will still be able to make updates
with pc as the base path. Therefore we can go on to compute
the full pcq. We will still be able to make updates with pc as
the base path; for more information, see Appendix C.

It is possible that we might encounter this issue again
when computing a path to vn with pc as the base; in the
process of computing q with pc as the base, there may ex-
ist some vertex v′split that causes the same issue as vsplit. In
that case, our logic can be applied recursively until no such
vertex like v′split exists. Therefore, |p| ≤ |pc|. �

We can ignore considerations regarding the cycle cap for
the rest of the proof, since all cycles discussed will have size
at most |pq| ≤ |pcq| = |c|, which is legal by assumption.

At this point, we have p and q such that pq is a circuit
(i.e., a path that starts and ends at the same vertex but which
might not be a cycle because it might visit some vertices
more than once), and w(pq) < 0. We now introduce a tool
that we will use to finish the proof of the theorem by using
the tool repeatedly.

Claim: In a directed graph, if there exists a circuit ` that is
not a cycle and w(`) < 0, then there exists a circuit `′ where
w(`′) < 0 and |`′| < |`|.
Proof: One can split ` into two non-empty paths, α and β,
where neither path intersects itself. Because ` is a circuit but
not a cycle, α and β intersect. Thus there exists v∩ ∈ α
where v∩ ∈ β. If there are multiple such vertices, let v∩ be
the one occurring earliest in α. Then α = α1v∩α2 and β =
β1v∩β2, where α1, α2, β1, and β2 are nonempty. Since v∩
is the earliest vertex in α that intersects with β, we have that
α1 and β are disjoint; in particular, α1 and β2 are disjoint.

We know that α1 is a path from some start vertex u to v∩
and that β2 is a path from v∩ back to u. Since α1 and β2 are
disjoint, α1β2 is a cycle, and |α1β2| < |`|.

Case I: w(α1β2) < 0. This trivially satisfies the claim.
Case II: w(α1β2) ≥ 0. Because w(α1β2) ≥ 0 and

w(`) < 0, we must have w(α2β1) < 0. Since α2 is a path
from v∩ to some vertex u′ 6= u, and thus β1 is a path from

some vertex u′ to v∩, α2β1 is a circuit such that w(α2β1) <
0. Since neither α2 nor β1 contain u, |α2β1| < `. �

We now return to the proof of the theorem. Recall that we
have p and q such that pq is a circuit, and w(pq) < 0.

By the claim above, the presence of a negative circuit pq
implies that either p and q do not intersect, or that there ex-
ists a negative circuit p′q′ that has fewer vertices.

If p and q were not intersecting, pq would be a shorter
path than pcq, which violates the assumption that c contains
the shortest path. Thus, p and q do intersect. Therefore, there
exists a negative circuit p′q′ that has fewer vertices.

Since we can only shrink pq, p′q′, and so on in this fashion
a finite number of times, there must exist some negative cir-
cuit p∗q∗ where p∗ and q∗ do not intersect; so, the negative
circuit is a cycle.

5 Experiments
We experimentally compare our new branch-and-price-
based solver BNP-POLY (which has the modified, cor-
rected pricer of Glorie et al. (2014)) against the prior state-
of-the-art branch-and-price-based solver, BNP-DFS, due
to Abraham et al (2007), and the current state-of-the-art
constraint-generation-based solver, CG-TSP, due to Ander-
son et al. (2015b). On each problem instance, each solver
was given access to 28GB of RAM, 4 cores, and 60 minutes
of wall time. (Timeouts are counted—conservatively against
our solver as will become clear—as 60 minutes toward run-
time averages.)

The cap on cycle length was set to 3, as is almost ubiqui-
tous in practice (also at UNOS). We varied the chain cap.

Real UNOS match runs. We first test on real data from
the United Network for Organ Sharing (UNOS) nationwide
kidney exchange, which now contains 143 transplant cen-
ters, that is, 60% of all transplant centers in the US. The
164 match runs on which we test range from October 2010
to November 2014, during which the exchange grew from
around 70 patient-donor pairs and altruists to almost 200.

Figure 3 shows mean time to completion for each of the
three solvers. All three easily solve instances for chain caps
at or below 5; however CG-TSP begins to struggle at chain
caps above 5, and even times out on one instance. BNP-
DFS remains competitive with BNP-POLY until a chain cap
of 9, at which point its exhaustive DFS to solve the pricing
problem begins to add substantial runtime cost. BNP-POLY
solves all instances extremely quickly.
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Figure 3: Mean runtime for BNP-DFS, BNP-POLY, and
CG-TSP on the first 164 UNOS exchange match runs.
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Figure 5: Run time as the chain cap K ∈ {4, 5, 6, 7} increases (left to right), for varying numbers of altruist donors.

Generated UNOS data. At the time of writing, the two
largest kidney exchanges—UNOS and the National Kidney
Registry6—each contain around 300 patient-donor pairs and
altruist donors. To test on large numbers of instances with
300 vertices, we generated demographically-accurate prob-
lem instances by sampling the set of all pairs and altruists
who had entered the UNOS exchange by Nov. 2014. In the
following figures, each data point is the average over 20 in-
stances. Each algorithm was run on the same instances.

Figure 4 shows run time for increasing |A| and chain caps.
In general, higher chain caps tend to increase problem dif-
ficulty for all solvers (although for much smaller graphs we
observed an interior hardness peek as a function of chain
cap for CG-TSP). BNP-DFS and CG-TSP timed out on
instances with just three altruists and a chain cap of 5. BNP-
POLY beat both of those prior state-of-the-art solvers (both
with respect to timeouts and average runtime).

Figure 5 again shows that BNP-POLY is clearly faster
and has fewer timeouts than BNP-DFS and CG-TSP. With
an interior number of altruists in the pool, all algorithms
take non-negligible time. For very large |A|, BNP-POLY
solves instances more quickly than for a medium number.
We conjecture that this is because good upper bounds are
reached quickly in the branch-and-bound tree, since with
large |A| the best feasible solution matches all pairs and thus
meets the upper bound that is computed without cycle or
chain caps.7 BNP-DFS will have these same bounds, but the
exponential-time pricing problem takes substantially longer
due to a (potentially necessary) crawl of a large number of
chains. With large numbers of altruists, BNP-POLY is fast
while the other solvers time out on essentially all instances.

When there is no chain cap, CG-TSP tends to signifi-
cantly outperform the other solvers. However, as explained
earlier in the paper, the very long chains that it generates in

6
http://www.kidneyregistry.org

7This can be solved in polynomial time using maximum-
weighted matching (Abraham, Blum, and Sandholm 2007)

that setting typically fail to execute in practice.

6 Conclusions & Future Research
In this paper, we built a fast clearing engine to optimally
solve the maximum-cardinality and maximum-weight kid-
ney exchange problems. First, we identified a bug in the
state-of-the-art algorithm, proposed a fix, and proved its cor-
rectness. We incorporated this fixed method and other per-
formance improvements into a prior branch-and-price-based
integer program solver. Motivated by our experience with
the United Network for Organ Sharing (UNOS) kidney ex-
change which, like other exchanges, uses cycles and chains
with finite caps, we then tested our solver against the lead-
ing constraint-generation-based solver and a prior state-of-
the-art branch-and-price solver. On both real match run data
from the UNOS exchange and realistic simulated data, for
realistic cycle and chain caps, our solver significantly out-
performs both prior state-of-the-art solvers—often optimally
clearing instances that the other solvers cannot.

Beyond being able to support the growing practical pools
and desired chain caps, faster clearing algorithms enable
more expressive, and thus more realistic, models of kid-
ney exchange to be solved—and deployed in practice. Faster
static solvers slot into dynamic kidney exchange frame-
works, all of which struggle with computational complex-
ity even at very small exchange sizes (Awasthi and Sand-
holm 2009; Dickerson, Procaccia, and Sandholm 2012a;
Dickerson and Sandholm 2015); taking the dynamics of
exchange (vertex entrance/departure, edge failure, and so
on) into account would result in substantial gains in theory
and practice, making this a promising future research direc-
tion (Ünver 2010; Blum et al. 2013; Akbarpour, Li, and Gha-
ran 2014; Blum et al. 2015; Anderson et al. 2015a). Adapta-
tions of our solver could also be used to clear exchanges with
different logistical constraints, e.g., lung (Ergin, Sönmez,
and Ünver 2014; Luo and Tang 2015), liver, and cross-organ
exchanges (Dickerson and Sandholm 2014).
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A Extra Proofs
Proof of Theorem 1. Suppose the algorithm returns some
cycle c = 〈v1, v2, . . . , vn〉. Then (vn, v1) ∈ E, and there
is a path p from v1 to vn with weight w(p), where w(p) +
w(vn, v1) < 0. Running Bellman-Ford for L (resp.K) steps
ensures that the cycle does not exceed the exogeneous cy-
cle (resp. chain) cap. Furthermore, our modification only
update the distances to a vertex vi along p if vi does not
occur in p yet, so any computed path uses each vertex at
most once. Also note that the edge (vn, v1) cannot be part of
that path, since we never update the distance to the source.
Thus, cycle c uses each vertex at most once, and has negative
weight.

B Pseudocode for the Corrected Polynomial
Pricing Scheme

In this section, we provide as Algorithm 1 the full pseu-
docode for our adapted version of the polynomial pricing al-
gorithm provided by Glorie et al. (2014). Algorithm 1 serves
as the cycle and chain pricing engine used for the BNP-
POLY experiments in Section 5.

In Algorithm 1, for a fixed source, let di(v) represent the
computed distance from that source to v after the ith step of
the algorithm, where d0(v) represents the distances before
any steps are performed. Distance is defined as the sum of
the edge weights in the computed path. Let L and K be the
maximum allowable cycle and chain lengths, respectively.
Finally, let A be the set of altruist donors and let P be the
set of donor-patient pairs. The function GETNEGATIVECY-
CLES is called with the reduced graph G = (V,E), cycle
cap L, and chain cap K.

C Other Solver Improvements and
Implementation Details

In this section, we discuss improvements we made to the
base solver of Abraham et al. (2007), as well as additional
implementation details regarding the implementation of the
Glorie et al (2014) methodology and our fixed version of it.

The adapted Bellman-Ford pricing method is more
complicated than normal Bellman-Ford
We now describe how it is necessary in the implementa-
tion of the adapted Bellman-Ford method of Algorithm 1
to maintain the entire 2-dimensional predecessor array for
vertices in the pricing graph, whereas a 1-dimensional ar-
ray suffices in typical Bellman-Ford (see, e.g., Cormen et
al. (2009)). This difference arises from the fact that we need
to limit the number of edges in a path, or else the cycles we
generate may exceed the permissible length. If we only use a
1-dimensional predecessor array, running Bellman-Ford for
k steps does not guarantee paths of length at most k.

The intuition for this requirement is as follows: say we
would like to compute paths of length at most k, so we run
k steps of Bellman-Ford. Suppose that after k − 1 steps, the
path to vertex u has k−1 edges, and that on the last step, the
distance to a neighboring vertex v is updated via vertex u. If
nothing else is updated, the path to vertex v would have k
edges, which is valid. However, suppose the path to vertex u
also gets updated, and that this updated path also contains k
edges. Since at this final step vertex v has u as its predeces-
sor (denoted pred(v) = u), the path to vertex v is the path
to u plus the edge (u, v), so the path to v is now k+1 edges
long, which is invalid.

It is also not viable to simply exclude those paths that end
up with more than k edges, since the algorithm may have
forgotten a different path to v that was less promising at
the time, but—under the additional constraint that paths of
length greater than k are invalid—would have ended up only
using k edges. If that other path were to represent the only
positive-price cycle, Algorithm 1 would mistakenly return
that there are no positive price cycles, breaking the correct-
ness of the branch-and-price solver. Figure 6 illustrates such
a situation.

v1

v3v2 v4

0 0 0

-1 -1

Figure 6: Example pricing graph where a 2-dimensional pre-
decessor array is used for correctness (when L = 3).

In the pricing graph of Figure 6, suppose we used the stan-
dard 1-dimensional predecessor array and ran Bellman-Ford
for two steps, using vertex v1 as the source. Then, Table 1
shows the computed predecessors for each of the three non-
source vertices.

If only the last predecessor array row is examined,
the path to vertex v4 that is extracted by following the



Algorithm 1 Corrected polynomial-time Bellman-Ford search for negative weight cycles.
1: function GETNEGATIVECYCLES(G = (V,E), L,K)
2: C ← ∅ . Accumulator set for negative weight cycles
3: for each s ∈ V do
4: N ← s ∈ A ?K − 1 : L− 1 . Set maximum step number based on chain or cycle cap
5: pred0(v) = ∅ ∀v ∈ V
6: d0(s) = 0 . Distance from source to source is zero
7: d0(v) =∞ ∀v 6= s ∈ V . Distance at step 0 to other vertices is infinite
8: for i ∈ {1, . . . , N} do
9: di(v) = di−1(v) ∀v 6= s ∈ V

10: pred i(v) = pred i−1(v) ∀v 6= s ∈ V
11: for each (u, v) ∈ E do
12: if v 6∈ TRAVERSEPREDS(u, pred , i− 1) then . Avoid loops in path
13: if di−1(u) + w(u, v) < di(v) then . If this step decreases the distance to node
14: di(v)← di−1(u) + w(u, v) . Update to shorter distance
15: pred i(v)← (u, i− 1) . Store correct predecessor
16: for each v 6= s ∈ V do . Find negative weight cycles with s as the source
17: if dN (v) + w(v, s) < 0 then
18: C ← C ∪ TRAVERSEPREDS(v, pred , N)

19: return C
20: function TRAVERSEPREDS(v, pred , n)
21: c← [] . Start with an empty list (representing a cycle or chain)
22: curr ← v
23: while curr 6= ∅ do . Until we reach the source node ...
24: c← curr + c . Add predecessor to path
25: (u, i)← predn(curr) . Get predecessor of predecessor
26: curr ← u; n← i

27: return c

Step # pred(v2) pred(v3) pred(v4)

0 – – –
1 v1 v1 v1
2 v1 v2 v3

Table 1: Predecessor table computed for the graph of Fig-
ure 6 with vertex source v, for k = 2 steps.

pred mapping will be (v1, v2, v3, v4)—which contains
three edges, even though we only ran Bellman-Ford for
k = 2 steps.

It is even possible to form paths of arbitrary length after
two steps. Suppose there also existed v4 . . . vn. Add an edge
(v1, vi) with weight 0, and an edge (vi, vi+1) with weight
−1 for all i. Then after two steps, a 1D predecessor array
would implicitly hold a path of length n.

We solve this issue as follows. When we update the dis-
tance to vertex v by way of neighboring vertex u, we cannot
simply replace the new path to vertex v by the path to vertex
u plus the edge (u, v), as would be done in typical Bellman-
Ford. Instead, the new path to vertex v should be the path
to vertex u at the time of the update plus the edge (u, v). In
the above example, when we update the distance to vertex
v4 on the second step, the path to vertex v3 is (v1, v3), so the
overall path to vertex v4 should be (v1, v3, v4).

To handle this, whenever we make an update we must not

only store the predecessor, but also the time of the update
(the step number). Then when extracting a path to vertex,
we can jump to the predecessor of that vertex at the time of
the update. However, this process requires storing the entire
2-dimensional array of all (updated) predecessors on each
step.

Note that every time the algorithm jumps to a vertex’s pre-
decessor, it moves at least one time step backwards in the 2-
dimensional predecessor array. Since the path creation pro-
cess ends when the time step reaches 0, and there are a total
of k steps (rows in the array), any extracted paths are guar-
anteed to have at most k edges. Also note that this process
does not change the sequence of updates in the algorithm;
instead, it ensures that the paths extracted in the end accu-
rately reflect the sequence of updates.

Finally, note that when we store paths at the time of up-
date, the final path to a vertex v may contain a vertex u but
not the final path to vertex u. This is explains in the proof of
Theorem 2 how we are able to continue to make updates to
pc, even after p is computed later.

A simple optimization
A standard implementation optimization of Bellman-Ford
that we use is that on each step, we only check out-edges
from nodes whose distances we just updated. This is es-
pecially useful in our context, because when L and K are
small, there will often only be a few nodes whose distances
were just updated.



Edge branching scheme and heuristics
During the branch-and-bound (and thus also branch-and-
price) search, when the LP relaxation at a given node is
non-integral, and the upper and lower bounds do not fathom
that subtree, a decision variable (or set of decision variables)
must be chosen on which to branch. For example, the origi-
nal branch-and-price-based solver BNP-DFS chooses a sin-
gle variable xc corresponding to a cycle or chain c whose
value is non-integral (i.e., for a binary variable xc in the IP,
the relaxed value in the LP xc ∈ (0, 1)) to branch on (Abra-
ham, Blum, and Sandholm 2007). If there is more than one
such non-integral variable, the one with value closest to 0.5
is chosen, and the subtree with xc = 1 is explored first in
depth-first order.

As discussed by Glorie et al. (2014), their polynomial
pricing algorithm (and also the fixed version we present in
this paper) is incompatible with branching on cycles. Con-
sequently, we use an edge branching scheme in BNP-POLY:
when the LP solution at a node is fractional, a non-integral
edge is chosen to branch on. Glorie et al. (2014) showed how
to branch on edge variables, while still in a cycle formulation
model. That is the scheme we use in this paper, as described
below.

Let xc be the relaxed decision variable for cycle c in the
LP. Then, the value for any edge e in the compatibility graph
is e =

∑
c:e∈c xc, the sum of relaxed values for xc ∈ [0, 1]

over all cycles c that contain edge e. It is not immediately
clear that the presence of a fractional cycle in the LP implies
the presence of a fractional edge, but Glorie et al. (2014)
show that this is in fact the case.

At a given node in the search tree, there may be many
edges that are fractional under this definition. In our exper-
iments, we choose an edge e with value closest to 0.5. We
branch first to the subtree that forces the inclusion of this
edge. That forced inclusion is implemented by an additional
constraint stating

∑
c:e∈c xc ≥ 1 (i.e., at least one cycle

containing edge e must be contained in the final solution).
The alternate direction is implemented by an additional con-
straint

∑
c:e∈c xc ≤ 0.


