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Abstract
Rideshare and ride-pooling platforms use artificial
intelligence-based matching algorithms to pair rid-
ers and drivers. However, these platforms can in-
duce inequality either through an unequal income
distribution or disparate treatment of riders. We in-
vestigate two methods to reduce forms of inequal-
ity in ride-pooling platforms: (1) incorporating fair-
ness constraints into the objective function and (2)
redistributing income to drivers to reduce income
fluctuation and inequality. To evaluate our solu-
tions, we use the New York City taxi data set. For
the first method, we find that optimizing for driver-
side fairness outperforms state-of-the-art models on
the number of riders serviced, both in the worst-off
neighborhood and overall, showing that optimizing
for fairness can assist profitability in certain cir-
cumstances. For the second method, we explore
income redistribution as a way to combat income
inequality by having drivers keep an r fraction of
their income, and contributing the rest to a redis-
tribution pool. For certain values of r, most drivers
earn near their Shapley value, while still incentiviz-
ing drivers to maximize value, thereby avoiding the
free-rider problem and reducing income variability.
The first method can be extended to many defini-
tions of fairness and the second method provably
improves fairness without affecting profitability.

1 Introduction
Ride-pooling platforms, such as UberPool and Lyft-Line,
manage independent drivers who can service multiple rid-
ers concurrently. To match riders and drivers, they use
artificial-intelligence-based matching algorithms [Turakhia,
2017]. While matching algorithms typically aim to maximize
income, they can inadvertently have negative consequences
on fairness, such as a gender wage gap [Cook et al., 2018] or
rider discrimination based on race [Brown, 2018].

While the nascent literature on fairness in ride-pooling is
limited, prior research has looked at maximizing the min-
imum utility across riders and drivers by approximating
the problem as an instance of the bipartite matching prob-
lem [Lesmana et al., 2019]. There have also been past pa-

pers that have looked into the sub-problem of fairness in
rideshare, where drivers can only service one rider request at
a time (such as UberX), which simplifies the matching prob-
lem. Past work has used a bipartite matching problem frame-
work to prove bounds on the trade-off between fairness and
income [Nanda et al., 2020; Xu and Xu, 2020]. Additionally,
past research into rideshare fairness has considered equaliz-
ing utility across riders and drivers [Sühr et al., 2019].

Recent work into the ride-pooling matching problem
showed that using a Markov decision process (MDP) based
approach, in combination with deep learning, maximizes the
number of rider requests serviced because it makes non-
myopic decisions [Shah et al., 2020]. We build on prior
ride-pooling work [Lesmana et al., 2019; Shah et al., 2020]
to develop a simple yet robust method to improve fairness
non-myopically, which can be generalized to different no-
tions of fairness. Motivated by reports of wage inequality
and rider discrimination [Brown, 2018; Cook et al., 2018;
Moody et al., 2019], we develop two methods to reduce cer-
tain definitions of inequality within the MDP framework: (1)
modifying the objective function of the MDP and (2) creating
an income redistribution method.1 Our contributions are the
following:

1. We extend an MDP-based framework to non-myopically
optimize for different definitions of fairness.

2. We propose new objective functions that aim to maintain
profitability while minimizing inequality on the driver and
rider-sides, and evaluate their effect on inequality. We
show that certain objective functions can reduce inequality
while maintaining or even improving profitability.

3. We implement an income redistribution scheme, where
each driver contributes a certain percentage of income
earned, which is then redistributed to other drivers to offset
income fluctuation and reduce wage inequality. We show
that, under certain levels of risk tolerance, we can use in-
come redistribution to significantly reduce wage inequal-
ity while avoiding the free-rider problem. Additionally,
we prove that our income redistribution scheme guaran-
tees drivers a minimum wage.

We find that varying the objective function can positively

1Our code and data is publicly available at https://github.com/
naveenr414/ijcai-rideshare
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impact rider-side fairness, and utilizing income redistribution
can improve driver-side fairness. When used together, these
methods can improve both rider and driver-side fairness, and
could potentially be used not only for ride-pooling, but also
for other matching and resource allocation problems.

2 Related Work
The complexity of the ride-pooling matching problem led
to the need for algorithmic solutions. One attempt to solve
the problem reduces it to a version of the bipartite match-
ing [Zhao et al., 2019]. Other papers model this problem
as an MDP which takes into account future consequences of
matching [Lin et al., 2018; Li et al., 2019]. Our work builds
on previous work that uses offline-online learning and ap-
proximate dynamic programming to match drivers and riders
non-myopically [Shah et al., 2020].

While these algorithmic solutions serve more customers
than traditional taxi services [Uber, 2015], recent literature
has raised questions about the fairness of the matches gen-
erated by these algorithms. On the rider side, Brown et
al. [Brown, 2018] highlight the disparate treatment of riders
by ride-pooling companies, which results in higher rates of
trip cancellation for black riders. Similarly, on the driver side,
some ride-pooling drivers cannot achieve a living wage due to
income inequality [Graham, 2017].

One approach to dealing with these issues is to reformu-
late the problem using bipartite matching and utilize a min-
max objective function to maximize the minimum utility for
drivers and riders [Lesmana et al., 2019]. Within the sub-
problem of rideshare matching, which is simpler because
drivers cannot concurrently service multiple riders, past work
has proven bounds on the trade-off between fairness and effi-
ciency for a specific notion of fairness [Nanda et al., 2020;
Xu and Xu, 2020; Ma and Xu, 2020]. Past empirical re-
search has looked into equalizing utility across drivers and
riders [Sühr et al., 2019], and improving the fairness of
rideshare demand functions [Yan and Howe, 2020].

Our work builds on past ride-pooling work [Shah et al.,
2020; Lesmana et al., 2019] to develop a general method that
can be adapted for many definitions of fairness, while also
matching non-myopically by using an MDP. We are the first
study to look at fairness in MDP-based matching for ride-
pooling or rideshare, and so our work applies to the broader
class of non-bipartite matching problems. Additionally, we
use income redistribution to reduce income fluctuation and
inequality without affecting profitability, which has not been
explored in previous work.

3 Problem Statement
In this section, we formally describe our problem, methodol-
ogy, and evaluation strategy.

3.1 Problem Description
We consider the problem of matching a stream of rider re-
quests to one of n drivers. All riders and drivers reside on a
graph, which consists of locations, L, and edges, E, where
Ei,j represents the travel time in minutes between location
i ∈ L and location j ∈ L. A trip between location i and

location j is priced at Ei,j + δ, where δ is a constant, captur-
ing both the fixed and variable costs inherent in ride-pooling
pricing. Although the stream of rider requests is continuous,
we batch requests and match once a minute, which emulates
what ride-pooling companies perform in reality [Uber, 2020].
We define rider requests and driver states as follows:
1. We define a rider request, which refers to a rider requesting

a ride, to be the tuple ui = (gi, ei, ti). In the tuple, gi, ei ∈
L are the starting and ending location for the rider request,
and ti is the time when the rider request originated.

2. We define the state of each of the n drivers as ri =
(mi, ci, di, pi, si), where mi is the capacity of driver i,
and ci is the number of riders currently driven by driver i.
di ∈ L is the location of the driver, pi is the set of cur-
rent requests that driver i is servicing, and si is the set of
previously completed requests, making |pi|+ |si| the total
number of requests that will be serviced by driver i.

3.2 Matching Riders and Drivers
We describe how we match m rider requests, U = u1 · · ·um,
with n drivers, R = r1 · · · rn, using an MDP framework.
Because each driver can be matched to multiple riders, we
reduce the number of rider-driver combinations by generating
feasible matchings for each driver. We let F i represent all
feasible matchings for driver i, where each matching, f ∈ F i

is a set of requests that can be served simultaneously by driver
i [Alonso-Mora et al., 2017]. We let ai,f denote an indicator
value, determining whether the set of requests f is matched to
driver i. Each driver is matched to one f ∈ F i, which could
be the empty set, where the driver gets no new rider requests.

The problem reduces to selecting feasible matchings that
maximize an objective function, subject to constraints, which
we solve through an integer linear program. Let the objective
function be o(R,W ), which measures the benefit of having
the drivers be in the state R, where W is the set of all pre-
vious unaccepted and accepted requests. If, after accepting a
matching f ∈ F i, the approximate new state of the drivers is
R′, then the change in objective function is

∆o(R,W, f) = o(R′,W ∪ f)− o(R,W ). (1)

We approximate the post-acceptance state, R′, from prior
work [Shah et al., 2020]. To avoid matching myopically, we
compute the value function, V (R′) for the state of drivers
after matching. We approximate the value function through
deep learning following past work, where the value function
is an approximation of the objective function, o(R,W ), over
a future state, R′, essentially stating the value of a driver re-
siding in a state R′ [Shah et al., 2020]. To perform deep
learning, we utilize a neural network that takes as inputs, the
locations of the drivers and their current path, and uses that
to learn the value function. The details of training, network
structure, and configuring the deep network can be found in
our code, and prior work [Shah et al., 2020]. We then weight
each feasible matching as ∆o(R,W, f) + γV (R′), where the
discount factor γ = 0.9. Our aim is to maximize:

n∑
i=1

∑
f∈F i

ai,f (∆o(R,W, f) + γV (R′)) (2)



While o could be non-linear, we pre-compute ∆o(R,W, f) to
avoid non-linearities. We use (2) as the objective function in
an integer linear program subject to the following constraints:
1. Driver-side feasibility. One assigned action per vehicle:
∀i,

∑
f∈F i ai,f = 1.

2. Rider-side feasibility. At most one assigned action per
request: ∀j,

∑N
i=1

∑
f∈F i,uj∈f a

i,f ≤ 1.

Through the integer linear program (ILP), we compute
ai,f , which determines which feasible matchings are selected.
The ILP is run online using an offline-trained value function.

3.3 Evaluation Strategy
To evaluate our methods, we utilize the New York City
taxi data set [New York City, 2016], a commonly used
dataset [Lesmana et al., 2019; Shah et al., 2020; Alonso-
Mora et al., 2017] which contains pickup and drop-off loca-
tions and times for taxi passengers from March 23rd to April
1st and from April 4th to April 8th, 2016. Data from ride-
pooling companies are generally proprietary, so we use taxi
data to simulate ride-pooling under the assumption that the
spatial and temporal distribution of rider requests are similar.
The pickup and drop-off location for each rider request is re-
ported in longitude-latitude coordinates; we discretize these
into |L| locations in New York City and compute travel time
and paths between each pair of locations. The driver loca-
tions are initially randomized, but remain consistent between
experiments and trials. The data from both experiments (Sec-
tions 4 and 5) are available online.2

4 Fairness-based Objective Functions
We develop fairness based objective functions to improve
both driver-side and rider-side fairness. In Section 4.1, we
discuss profitability metrics that prior work has optimized for.
In Sections 4.2 and 4.3, we define our notions of driver and
rider-side fairness, and then operationalize each of these by
developing two objective functions. In Section 4.4 we dis-
cuss how we test each objective function, and in Sections 4.5
and 4.6, we discuss the results after running the experiments.

4.1 Profitability Metrics
We develop two different measures of profitability: the num-
ber of riders serviced and the total income accumulated by
drivers. To define these two metrics, if the driver states are
R = r1 · · · rn, where ri = (mi, ci, di, pi, si), then the total
number of rides serviced by driver i is |pi|+|si|, which repre-
sents ongoing requests (pi), and completed requests (si). We
develop an objective function based on the total number of
rider requests serviced by all drivers:

o1(R,W ) =

n∑
i=1

|pi|+ |si|. (3)

Similarly, the income for any request u = (g, e, t) isEg,e+δ.
So, if we let πi denote the income for driver i, where

πi =
∑

u=(g,e,t)∈pi∪si

Eg,e + δ, (4)

2https://www.dropbox.com/s/y9pkmzmbjclrfrx/test-
data.zip?dl=0

then our income objective function is the total income:

o2(R,W ) =

n∑
i=1

πi. (5)

The state-of-the-art method [Shah et al., 2020] matches
based on maximizing the number of requests.

4.2 Rider-Side Fairness Metrics
We define fairness for both drivers and riders. We note that,
as with all operationalizations of societally-relevant concepts
such as fairness, the decision of which definition of fair-
ness to use—if one is appropriate to use at all—is morally-
laden, and one that should be made with the explicit input of
stakeholders. Our definitions are drawn in part from recent
reports of (primarily rider-side) unfairness in fielded ride-
pooling applications [Dillahunt et al., 2017; Brown, 2018;
Pandey and Caliskan, 2020]; still, we acknowledge that these
need not be one-size-fits-all formalizations of a complicated
concept, and view them rather as illustrative examples of a
class of fairness definitions that could be incorporated into au-
tomated matching algorithms used by ride-pooling platforms.

We base our conception of rider-side fairness on the differ-
ential treatment of riders based on membership in a protected
group, such as race [Brown, 2018]. Because we lack access to
any protected information in our data set, we instead measure
fairness based on the distribution of neighborhoods serviced,
though the method could be applied to any protected group.

We define a neighborhood as a set of locations in L, and
so for any l ∈ L, we define the neighborhood function,
1 ≤ N(l) ≤ H , as the function which maps locations
to neighborhood labels. The neighborhood function is con-
structed through the k-means algorithm, which divides the |L|
locations into H neighborhoods based on their latitude and
longitude. To determine the distribution of neighborhoods
serviced, we define hj as the number of requests serviced
starting in neighborhood j, where hj is

hj =

n∑
i=1

∑
u=(g,e,t)∈(pi∪si),N(g)=j

1, (6)

The total number of requests, serviced or non-serviced, orig-
inating from neighborhood j is kj ≥ hj defined as

kj =
∑

u=(g,e,t)∈W,N(g)=j

1. (7)

Our aim is to equalize treatment across neighborhoods, and
so we aim to equalize the percent of requests serviced, hj

kj
,

which we call the success rate. To avoid making all success
rates 0, we include a profitability term, and regulate the size
of the two terms with a hyperparameter λ. This makes our
objective function for rider-side fairness:

o3(R,W ) = −λVar(
hj
kj

) +

n∑
i=1

πi, (8)

where Var is the variance function. We develop two metrics
of rider-side fairness which capture the spread and scale of
disparate treatment: min(

hj

kj
) and Var(

hj

kj
) respectively.



4.3 Driver-Side Fairness Metrics
We develop corresponding objective functions and metrics on
the driver-side. Recent news has noted wage discrepancies
among drivers [Graham, 2017; Bokányi and Hannák, 2020],
so we aim to reduce income disparity. Similar to the rider-
side, our objective function minimizes the spread of income
while maintaining profitability, which is represented as

o4(R,W ) = −λVar(πi) +

n∑
i=1

πi. (9)

We measure the scale and spread of driver-side inequality
through two metrics. The first measures the scale of income
disparity by calculating the minimum income for any driver,
which is min(πi), and the second captures the spread using
the variance function, which is Var(πi)

4.4 Experiment Setup
We compare the four objective functions, which we call re-
quest, income, rider-side fairness, and driver-side fairness.
We utilize each objective function with the matching algo-
rithm, train the corresponding value function, and test each
objective function on data from April 4th. The details of hy-
perparameters and value function training are in Appendix B.

4.5 Experiment Results
We run experiments comparing the different objective func-
tions on both profitability and fairness metrics. We describe
the major conclusions from our experiments below:

1. Alignment of fairness and profitability metrics. We find
that certain fairness metrics are aligned with profitability
metrics. In particular, objective functions that improve the
overall success rate for riders also improve the success rate
in the worst-off neighborhood (Figure 1). Similarly, the
objective function which maximizes total income at 200
drivers, the request objective function, also maximizes in-
come for those earning lower wages. However, efforts
to decrease the spread of income do not result in higher
wages for those at the bottom, and instead lower wages
across the board (Figure 2).

2. Driver-side fairness objective functions improve rider-
side metrics. We find that using an objective func-
tion that maximizes driver-side fairness manages to re-
duce the spread of income and also positively impacts
rider-side inequality and profitability. In particular, at 50
drivers, optimizing for driver-side fairness improves the
overall success rate and the success rate in the worst-off
neighborhood, but at 200 drivers, the state-of-the-art ob-
jective function, which optimizes for the number of re-
quests, maximizes both rider-side fairness and profitabil-
ity metrics. This is probably because, when optimizing
for driver-side fairness, drivers tend to service lower value
and shorter-distance rides to reduce the spread of income,
allowing for more rides to get serviced. However, when
there are too many drivers, there are not sufficient short-
distance requests.

3. Inability to raise wages for lowest wage earners. While
objective functions that maximize driver-side fairness re-
duce the spread of income, they do so at a cost to prof-
itability by lowering income across the board. This is a
general problem, as no objective function was able to raise
wages for the lowest-earning drivers when compared to
the state-of-the-art objective function.

4.6 Discussion
Our experiments show that, by changing the objective func-
tion used in matching, it is possible to improve rider-side
metrics. Additionally, we find that certain fairness metrics,
such as the success rate (fraction of requests serviced) in the
worst-off neighborhood, are aligned with profitability met-
rics. On the other hand, metrics that measure spread, such as
the spread of income, are not aligned with profitability met-
rics. To tackle this issue, we introduce an income redistribu-
tion method (section 5) which tackles driver-side inequality
without affecting profitability. The results from these experi-
ments can be incorporated into other matching algorithms to
improve fairness. Additionally, our methods can be extended
to other definitions of fairness by varying the objective func-
tion, and so are robust to different definitions of fairness.

5 Income Redistribution
To reduce the spread and fluctuation of income, we propose
an income redistribution method, where each driver takes
home a certain percentage of their income, and the rest is re-
distributed at the end of each day. In Section 5.1, we formal-
ize our income redistribution model, and we describe proper-
ties of the model in Section 5.2. In Section 5.3, we outline
experiments to test out income redistribution method, and we
detail the results in Section 5.4.

5.1 Model of Income Redistribution
Driver wages fluctuate day to day due to varying demand,
making it difficult for drivers to earn a reliable wage. To
counter this and reduce income inequality, we design an in-
come redistribution scheme. To do this, we define the amount
that drivers make before redistribution as πi, 1 ≤ i ≤ n, and
the amount they make after redistribution as qi, which is de-
pendent on the risk tolerance, r.

More valuable drivers should have a higher qi, as they
might work longer hours or service higher need areas. To gen-
erate an objective measure of the value of a driver, we utilize a
metric from game theory known as the Shapley value [Shap-
ley, 1953], which measures the marginal contribution of an
agent. The Shapley value helps assess the true contributions
of each driver, and was previously used to determine the value
of data points [Jia et al., 2019] and decide how much ride-
pooling riders should pay [Amano et al., 2020]. In our con-
text, we can formally define the Shapley value, vi, as the
marginal contribution of driver i to each subset of drivers;
that is, if we let D = {1, 2, . . . , n}, and π(s) be the income
that a subset s ∈ D would have made under the matching
algorithm, for just those s drivers. Then

vi =
∑

s⊂D\i

|s|!(n− |s| − 1)!

n!
(π(s ∪ i)− π(s)). (10)



Figure 1: Each point represents one combination of hyperparameter and objective function. We find that with 50 total drivers, the objective
function that minimizes the spread of income also achieves the highest request success rate both in the worst-off neighborhood and overall,
outperforming the state-of-the-art objective function. However, at 200 drivers, the objective function which maximizes the number of requests
serviced achieves the highest success rate overall and in the worst-off neighborhood. The success rates are small because the number of drivers
is much smaller than the number of riders; as the number of drivers increases, the success rate will approach 1.

Figure 2: We compare the distribution of income for different ob-
jective functions, choosing a fixed value of λ , and set the number
of drivers to 200. We find that optimizing for driver-side fairness re-
duces the income spread, however, at a cost to income for all drivers,
as the income distribution shifts downwards. Optimizing for rider-
side fairness does no better, as the whole distribution again shifts
downwards compared to the state-of-the-art method.

Example 5.1. Consider three drivers, and two riders, with
prices $10 and $5. Suppose drivers 1 and 2 can service the
first request, and drivers 2 and 3 can service the second re-
quest, where each driver can service at most one request. This
results in the following profits for each subsets of drivers:

Driver Subset Total Income
{} 0
{1} 10
{2} 10
{3} 5
{1,2} 15
{1,3} 15
{2,3} 15
{1,2,3} 15

To compute the Shapley value of driver 1, consider the 4
subsets excluding driver 1: {}, {2}, {3}, {2,3}, which make
0, 10, 5, and 15 respectively. When adding driver 1 to each
of these subsets, the total income increases by 10, 5, 10, and

0 respectively. We then average over these subsets, propor-
tional to the number of permutations for each subset, to get

2!

3!
× 10 +

1!

3!
× 5 +

1!

3!
× 5 +

2!

3!
× 0 = 5, (11)

which is the Shapley value of the driver.

Due to Shapley value properties,
∑n

i=1 vi =
∑n

i=1 πi, or
total value equals total income.

Calculating the Shapley value requires enumerating all
O(2n) subsets of drivers. To reduce this, we approximate vi
inO(n) evaluations through a Monte Carlo simulation [Ghor-
bani and Zou, 2019]. Using the Shapley value of a driver,
we redistribute income to reduce the difference between a
driver’s pre-redistribution income, πi, and their value, vi. The
redistribution amount depends on a risk parameter, 0 ≤ r ≤
1, which designates what fraction of their income is kept by
drivers. We collect

∑n
i=1(1 − r)πi from all drivers, and re-

distribute it proportional to the difference between their value
and earnings, which is max(0, vi−rπi). After redistribution,
each driver earns qi, defined by

qi = rvi +
max(0, vi − rπi)∑n

j=1 max(0, vj − rπj)

n∑
j=1

(1− r)vj . (12)

This essentially allows drivers to keep some income, and
redistributes the rest proportional to the difference between
earnings and value, which allows drivers who earned less than
their value to recoup some of their losses.

5.2 Redistribution Properties
Our approach to income redistribution begets two attractive
theoretical properties.

Theorem 5.1. When πi,
∑n

j=1 πj , and r are constant, qi is
maximized when vi is maximized.

Theorem 5.2. For a given vi, r, and fixed
∑n

j=1 πj , the min-
imum value of qi is min(rvi, (1− r)vi).



Figure 3: Comparing the gain (left) and standard deviation (right) of income to value ratio for different values of r. We find that when
0.5 ≤ r ≤ 0.9, the gain is non-zero, while the standard deviation is small and non-increasing, meaning that drivers are incentivized to earn
more without negatively affecting the income inequality.

Theorem 5.1 incentivizes drivers to maximize their value,
meaning that drivers are not better off putting in less effort
under income redistribution. Theorem 5.2 gives a guaran-
tee on the minimum amount that drivers can make, which is
helpful in light of the recent debates over minimum wage for
ride-pooling drivers [Keeton, 2016].

5.3 Experiments
To test the effect of income redistribution, we vary the risk
parameter and determine its effect on the income distribution.
We run experiments using a variety of objective functions and
number of drivers, though we focus on 200 drivers with the
requests objective function when describing results. While
we previously proved that drivers will aim to maximize vi,
making vi positively correlated with qi, we did not specify
the magnitude of this correlation. To quantify the correlation,
we define the gain metric, gi, as the ratio of change in qi to vi
when vi is doubled. Because higher vi leads to higher qi, we
know gi ≥ 0, and ideally, if vi for a driver is doubled, then so
would qi, meaning gi = 1. We calculate g = 1

n

∑n
i=1 gi as

the average gain metric over all drivers.
To determine the fairness of the income redistribution al-

gorithm, we look at the distribution of the ratio of vi to qi.
Ideally, each driver would earn their value, and so the spread
of the distribution would be 0. However, as risk tolerance in-
creases, less money will be redistributed, and so the spread
will increase. To quantify this, we compute qi

vi
for all i, and

then compute the standard deviation.

5.4 Experiment Results
We outline some of the findings from our experiments:

1. Ability to fairly redistribute. We find that, for 0.5 ≤
r ≤ 0.9, we can keep the gain larger than 0, while keep-
ing the spread of income to value ratio near 0 (Figure 3).
In practice, this means when r = 0.9, which corresponds
to g = 0.8, drivers receive, on average, an 80% raise in
income if they doubled their value. At the same time, the
standard deviation of qi

vi
is low, and so most drivers earn

close to their value. This allows for an equitable distri-
bution of income while avoiding the free-rider problem,

where income is spread out despite all the value being con-
centrated in one driver.

2. Tightness of Theoretical Bounds. While the bounds
in section 5.2 give results on the minimum amount that
drivers are guaranteed to make, in reality, the worst-off
drivers end up making significantly more than that. For all
values of r, the worst-off driver made at least $2500, while
the theoretical bounds peaked at $1500. The bounds as-
sume the worst-case situation where one driver gets all the
pre-redistribution income, however in practice, this rarely
occurs, and so the bounds are not tight.

6 Conclusions & Future Research
With an increasing ubiquity of ride-pooling services comes
the need to critically evaluate fairness for both sides of the
market – riders and drivers alike. By modifying state-of-
the-art ride-pooling matching algorithms, we explored objec-
tive functions that increase the number of requests serviced
for certain numbers of drivers, and also increased fairness
across groups. We additionally proposed addressing income
inequality by using income redistribution to allocate income
and alleviate fluctuation in income between drivers. By using
income redistribution, we found that it is possible to avoid
free-riding while keeping income inequality low.

We discuss three potential avenues for future work:
1. By evaluating methods on other data sets, we can test the

generalizability of our methods and determine the circum-
stances under which the methods perform optimally.

2. By developing provable guarantees for objective func-
tions, we increase the robustness of our objective functions
and guarantee that these objective functions work under
different circumstances.

3. By exploring income redistribution in other resource al-
location settings, we can tackle the fairness versus prof-
itability trade-off for other problems.
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Ethical Impact
We address a specific application of the classic fairness-
efficiency trade-off found in numerous economic systems.
While we did derive our proposed definitions of fairness from
reports of inequality in ride-pooling systems [Dillahunt et
al., 2017; Brown, 2018; Pandey and Caliskan, 2020], we
acknowledge that may not be the proper solution for all
settings where ride-pooling is deployed. Indeed, measur-
ing, defining, and incorporating definitions of fairness into
automated systems is an area of extremely active research
within the FATE community. We confidently make the pre-
scriptive statement that considerations of fairness at both
the driver and rider level should be taken into account in
some way in ride-pooling platforms. However, open dia-
logue with stakeholders—e.g., local governments, riders and
drivers hailing from various backgrounds—is imperative to
understanding the desires of those stakeholders.
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A Matching Details
We generate feasible combinations where the pickup delay is
less than 300 seconds and the drop-off delay is less than 60
seconds, which follows from previous work [Alonso-Mora et
al., 2017].

B Hyperparameters and Value Function
Training

We compare based on both the profitability metrics and the
fairness metrics, while varying the total number of riders at
full, half, and quarter demand, and the number of drivers at
10, 50, 100, and 200. We test each of the fairness objective
functions with a variety of hyperparameters, λ, and set δ = 5,
|L| = 4461, mi = 4, and H = 10. We train using data from
the week of March 26th, and we list hyperparameters for each
objective function below:

1. Request: We run the request objective function by train-
ing for 3 days and testing for 1 day.

2. Driver-side fairness: We run the driver-side fairness ob-
jective function by training for 3 days and testing for 1
day. We use λ = {0, 16 ,

2
6 ,

3
6 ,

4
6 ,

5
6 ,

6
6}

3. Rider-side fairness: We run the rider-side fairness objec-
tive function by training for 2 days and testing for 1 day.
We use λ = {108, 109, 1010}

4. Income: We run the income objective function by training
for 3 days and testing for 1 day.

For both the objective function and redistribution experi-
ments, we used a Red Hat Enterprise 7.9 server with 16 CPUs
on an Intel Xeon X5550 processor, with 36 GB of RAM
shared across multiple users. Each simulation took no longer
than 1 day, and many ran within a couple of hours.
For figure 2, we set λ = 4

6 for driver-side fairness, and
λ = 109 for rider-side fairness.

C Theoretical Guarantees
In this section, we provide supporting proofs for our theoret-
ical guarantees detailed in the income redistribution section.
First, we recall Theorem 5.1, and provide its proof now.

Theorem 5.1. When πi,
∑n

j=1 πj , and r are constant, qi is
maximized when vi is maximized.

Proof. For constant πi and r, this is the same as maximizing

rvi +
max(0, vi − rπi)∑n

j=1 max(0, vj − rπj)

n∑
j=1

(1− r)vj (13)

As vi increases, rvi also increases. Similarly, increasing vi
increases min(0,vi−rai)∑n

i=1 min(0,vi−rai)
and brings it closer to 1. Be-

cause πi is constant, then
∑n

j=1 πj =
∑n

j=1 vj is also con-
stant. Therefore, maximizing both the first and second terms
is done through maximizing vi, and so in order to maximize
qi, we need to maximize vi.

Next, we recall Theorem 5.2, and provide its proof below.

Theorem 5.2. For a given vi, r, and fixed
∑n

j=1 πj , the min-
imum value of qi is min(rvi, (1− r)vi).

Proof. Consider qi as a function of πi. Define d =∑n
i=1 max(0, vi − rπi), and T =

∑n
i=1 vi, d ≤ T . We

rewrite qi as

rvi +
max(0, vi − rai)

d+ max(0, vi − rai)
∗ T ∗ (1− r) (14)

This function has no local minima when 0 ≤ πi ≤ vi, and
when πi ≥ vi, qi ≥ rvi. At πi = 0, qi = vi

d × (1 − r)T ≥
vi
T × (1− r)T = (1− r)vi. Therefore, the minimum of qi is
the smaller of these two, which is min(rvi, (1− r)vi).

D Additional Experimental Results

Figure 4: We compare the overall success rate and the success rate in
the worst-off neighborhood for 10 drivers when rider demand is 50%
of normal. We find that both requests and driver-fairness objective
functions perform optimally.

Figure 5: We ran an experiment where vi was uniform for all drivers,
with n = 200 using the requests objective function. Using this
definition, even for r = 0.9, the spread of income is very small, and
so is another way to increase earnings for those with lower wages.



Figure 6: We compare the overall success rate and the success rate in
the worst-off neighborhood for 50 drivers when rider demand is 25%
of normal. We find that driver-fairness objective functions perform
optimally, though the gap between the driver-fairness and requests
objective functions tightens, when compared with figure 1. This
is because driver-fairness policies perform better when the number
of drivers is much larger than the number of riders, and so when
the number of riders decreases, the driver-fairness objective function
does worse relative to the requests objective function.

Figure 7: We compare the theoretical bound on the minimum wage
against the lowest income for any driver, at n = 200 using the re-
quests objective function. We find that the bound is very loose, as
the worst-off driver makes nearly double the theoretical bound.

Figure 8: We show a map of New York City, with each neighborhood
in a different color (note that all 10 neighborhoods are not shown).
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