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Accurately modeling human decision-making in security is critical to thinking about when, why, and how
to recommend that users adopt certain secure behaviors. In this work, we conduct behavioral economics
experiments to model the rationality of end-user security decision-making in a realistic online experimental
system simulating a bank account. We ask participants to make a financially impactful security choice, in the
face of transparent risks of account compromise and benefits offered by an optional security behavior (two-
factor authentication). We measure the cost and utility of adopting the security behavior via measurements of
time spent executing the behavior and estimates of the participant’s wage. We find that more than 50% of our
participants made rational (e.g., utility optimal) decisions, and we find that participants are more likely to
behave rationally in the face of higher risk. Additionally, we find that users’ decisions can be modeled well as
a function of past behavior (anchoring effects), knowledge of costs, and to a lesser extent, users’ awareness of
risks and context (R2=0.61). We also find evidence of endowment effects, as seen in other areas of economic
and psychological decision-science literature, in our digital-security setting. Finally, using our data, we show
theoretically that a “one-size-fits-all” emphasis on security can lead to market losses, but that adoption by a
subset of users with higher risks or lower costs can lead to market gains.

1 INTRODUCTION
People’s adoption, or rejection, of security behaviors can lead to system-wide consequences. While
security requirements and system defaults such as automatic updates can remove many human
decision-making fail-points for security-relevant systems, in many cases human decisions are still
required to enable security. As such, security researchers have tried to understand and alter the
decisions of the “human in the loop” [Cranor, 2008].
Prior work has proposed two simplified theories of the human in the loop: a rational actor

who chooses to ignore security behaviors because the costs always outweigh the potential losses,
and an irrational actor who chooses “dancing pigs over security every time” because they neither
understand nor care about security risks [Herley, 2009]. While these simplified models of user
behavior can help to provide high-level insights, our aim is to define a more realistic medium
between these two extremes: a semi (or boundedly) rational security actor with predictable, but not
always utility-optimal, behavior based on risks and costs.
End-user decision-making in security has largely been examined hypothetically [Böhme and

Grossklags, 2011, Herley, 2009] or qualitatively [Felt et al., 2014, Harbach et al., 2013, Hong, 2012,
Mathur et al., 2016, Sheng et al., 2010, Sunshine et al., 2009, Vaniea and Rashidi, 2016, Wash and
Rader, 2015]. Here, we seek to provide an empirical, economic examination of the rationality of
security behavior in a particular context. We define rationality as utility-optimality: that is, a
decision is rational if the utility (gain) from the decision is greater than the costs of enacting the de-
cision. Ultimately, we seek to understand:How do costs (C), risks (R), and user tendencies and
attributes (U ) influence: (1) a security decision and (2) whether that decision is rational?

By answering this question and quantifying a model of rationality in security behavior, we can
guide users toward utility-maximizing behavior (or lack of behavior) in order to optimize the use of
their personal, behavioral compliance budgets and maximize market gains from security [Acquisti
and Grossklags, 2005, Beautement et al., 2008].
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In this work, we construct an experimental system and conduct behavioral-economics experi-
ments (e.g., games) to evaluate and model security decision-making. Such experiments allow for
a high level of control, realism, and quantification beyond that usually achieved from traditional
survey and lab-based user-studies [Grossklags, 2007]. Our experimental system operates like a bank
account to which users have to regularly log in. In each game, users are assigned to a condition: in
one of the endowment conditions participants are given an amount of money and are required to
login once every 24 hours to retain their money, while those in one of the earn conditions begin
with a small amount of money and have the opportunity to earn more every time they log on.
When signing up for a game, participants are offered a security choice: whether to enable two-factor
authentication (2FA). Prior to making this choice they are shown explicit risks (which vary by
game): risk of being hacked and amount of protection offered by adopting 2FA. If they are hacked –
probabilistically determined by a script regularly run on the system – participants lose all of the
money in their account. At the end of a game, participants receive the real monetary value of the
amount left in their account.

Participants in our experiment play the game twice, each time with a different condition (endow-
ment/earn, hack risk, and protection offered by 2FA). We invited 150 AMT workers to play the first
game. Based on the observations we record during game play, we model the factors that influence
whether a participant enables 2FA and whether the decision was utility optimal (e.g., rational).
We further examine the extent to which people make utility-maximizing decisions and how the
optimization of choices varies based on effective risk and the endowment vs. earn condition.
We find that people’s decisions to enable 2FA can be explained well (pseudo-R2 = 0.612) by

their prior behavior (approximately 35% of the variance), knowledge of costs (e.g., awareness of
how long 2FA will take) (approx. 15% of behavior variance), and to a lesser but still significant
extent, explicit risk judgements and endowment effects (9% to 15% of variance, depending on their
knowledge of other factors). Further, we find that both risk and endowment effects also relate
to whether the decision to enable a behavior was utility-optimal. We find that those playing in
the lowest-risk conditions are far less likely to make utility-optimal decisions than those in the
highest-risk conditions. Those in the medium-risk conditions make a utility-optimal decision 58%
of the time the first time they play the game and 69% of the time the second. Our results suggest
that, in our experiment:

• Users made rational security choices approximately 50% of the time.
• User tend to act in accordance with an anchoring effect [Strack and Mussweiler, 1997]: they
tend to stick with the first security decision they make. More general security tendencies
(chosen password strength, security behavioral intentions) did not influence behavior.

• Users are boundedly rational: they appear to incorporate knowledge about costs and explicit
risks.

• In higher-risk conditions, users enable security options more often and make rational deci-
sions more often.

• When protecting assets they already have, especially in highest-risk games, users tend to
behave more rationally and more securely (endowment effect [Knetsch, 1989]).

Using this data, we can compute estimates of utility-optimizing behaviors for a given user based
on users’ typical costs (e.g., login speed, account balance, and earning potential) and estimated
explicit risks (risk of hacking, protection offered by a behavior). As a tangible example, we present
a thought experiment using our data to theorize about market gains and losses from different
approaches to user security: encouraging all users to be secure, encouraging utility-optimal behavior,
and not requiring end users to engage in security behaviors. We show that a “one-size-fits-all”
emphasis on security can lead to significant market losses from needless user costs for negligible
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security utility, and identify hypothetical risk thresholds at which targeted encouragement of
certain security behaviors for at-risk users can lead to market gains.

Consequently, we suggest a push toward personalized security recommendations (e.g., nudges)
to guide users toward utility-optimal behaviors and allow them more autonomy to make decisions
based on transparently communicated risks paired with a push for more data-driven research
quantifying those risks. We conclude with further discussion of the implications of our findings for
predicting user behaviors and improving market, or population, security through nudging and risk
communication, and suggest directions for future work.

2 RELATEDWORK
Below, we review prior work on the decision-making in security and privacy, focusing specifically
on economics-based studies when available.

Security Decision-Making. Herley takes the first economic approach to examining end-user
security decisions [Herley, 2009]. In his theoretical paper, he provides a cost-benefit analysis
of having end-users follow security advice. He argues that threats are so rare – and suggested
behaviors so ineffective – as to make it logical for end users to never adopt security behaviors.
Relatedly, Böhme and Grossklags approach user attention in security as a public good, that is,
as an extremely scarce resource and examine how to facilitate optimizing rather than satisficing
of user attention toward security warnings and privacy notices [Böhme and Grossklags, 2011].
They theoretically explore the effect of different user interface designs on the use of attention and
recommend that user interactions should be rationed, rather than just user interfaces optimized, to
maximize the use of users’ privacy and security compliance budgets.

The majority of security-related economics analysis of human behavior has focused on experts’
(e.g., system or network administrators) responses to threat [Christin et al., 2004, Grossklags et al.,
2008b, Hota and Sundaram, 2015, Johnson et al., 2010], organizational responses to threat [Campbell
et al., 2003, Gal-Or and Ghose, 2005, Miura-Ko et al., 2008], or attackers [Alpcan and Basar, 2006,
Chen and Leneutre, 2009, Liu et al., 2006, Manshaei et al., 2013, Sallhammar et al., 2005, Shim et al.,
2012]. For example, Grossklags and colleagues conduct a number of different studies applying
game-theoretic models to examine expert behavior in attack/defense security games [Christin
et al., 2004, Grossklags et al., 2008a,b, Johnson et al., 2010] finding evidence of unclear risks and
bounded rationality for security professionals; and relatedly, Rounds et al. examined the impact
of changes in security and reward on attacker responses, finding that as the value of an account
increases, so too does the number of attacks on that account; and as the amount of security on an
account increases so too does the number of attacks decrease [Rounds et al., 2013]. These analyses
of experts, however, provide limited insight into end-user behavior.
Christin et al. present one of the few empirical, economic-related, studies of security behavior:

they incentivized users to execute arbitrary code [Christin et al., 2011]. They adjusted the incentives
provided, finding that 43% of participants were willing to run untrusted executables for $1.00. Most
prior work focused on end-user decision making has been more qualitative, examining people’s
security decisions through surveys and interview studies. These studies include explorations of
why people say they update or do not update their software [Mathur et al., 2016, Vaniea and Rashidi,
2016, Wash and Rader, 2015], why users fall for phishing attacks [Hong, 2012, Sheng et al., 2010],
why people bypass browser warning messages [Felt et al., 2014, Harbach et al., 2013, Sunshine
et al., 2009], and even preliminary support for boundedly-rational decision-making in cybersecurity
based on post-event surveys with university students [Aytes and Connolly, 2004]. Findings have
shown evidence of the importance of fatigue from too many security demands, unclear risks, and
lack of clarity on the utility of behaviors for addressing risks.
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The reasonable conclusion of many of these end-user studies is a push for better education of
users to get them to take security risks seriously and enable security behaviors. Indeed, especially
in the corporate realm, there may often exist an implicit assumption that more security is better
and our goal should be to get all users to enable all security behaviors at all times [Herley, 2017,
Kirsch and Boss, 2007]. Herley’s work challenges this approach, arguing that security is never better
for the end-user, and at best benefits the corporations of whom they are clients while costing the
individual [Herley, 2009]. Underlying both approaches is also an implicit assumption that users
have rational reasons for adopting or ignoring security advice, and are able to interpret and make
reasonable decisions about risks if they are aware of them. In our work, we explore to what extent
users are rational actors and we explore what factors, including implicit and explicit risks and costs,
relate to the security decisions they make in our simulation. We also explore the impact of the
“users should always be secure” and “users should never be secure” perspectives on the costs and
utility of enabling 2FA for an entire population to better understand when, and whether, we should
encourage end users to adopt security behaviors.

Economics of Privacy. Prior work on privacy has explored privacy as a good and theoretical
privacy markets [Acquisti et al., 2016, Berthold and Böhme, 2010, Farrell, 2012, Hui and Png,
2006] as well as empirical examinations of users valuations of data [Bauer et al., 2012, Carrascal
et al., 2013, Cvrcek et al., 2006, Friedman, 2007], and especially their willingness to pay to protect
private, digital information vs. willingness to disclose information for a payout [Acquisti et al., 2013,
Schreiner and Hess, 2013, Schudy and Utikal, 2017]. Acquisti and colleagues have found evidence
of bounded rationality – that is, semi-rational decisions in which people are only able to take into
account a portion of the data (i.e., risks or evidence) in their decisions [Acquisti, 2004, Acquisti
and Grossklags, 2005] and have found that difficultly identifying risks and benefits can lead to
significant uncertainty that muddies privacy decision-making [Acquisti et al., 2015]. Closely related
to our work, Tsai et al. explore what happens when making privacy tradeoffs more transparent,
finding that when privacy information is surfaced to users in an online shopping scenario they
are more likely to make purchases from a privacy-preserving website, even at a higher cost [Tsai
et al., 2011]. Beyond privacy, behavioral economics experiments similar to ours have been used
effectively to model bounded-ly rational decisions in business and management settings, health,
and purchasing [Diamond and Vartiainen, 2012, Hanoch et al., 2007, Simon, 1979].
Our work draws on findings from these studies to explore bounded-rationality in security and

examine how security-tendencies such as password strength choices influence decision-making.
We combine the individual-focused analyses presented by this prior work in privacy with the
market-level analyses emphasized by security economics work, presenting a perspective on how
and when we should emphasize security protection for end-users.

3 METHODOLOGY
Below we describe our experimental system, the experiments (e.g., games), participant recruitment,
our analyses, and limitations. All procedures were approved by our institution’s review board.

3.1 System Design
We created the “bank” system to provide a similar UI flow to logging into a real bank account
(Figure 1 provides a system overview). The system URL was bank.[institutiondomain], had an SSL
certificate, and was thus displayed over HTTPS.
When participants began the study, they were taken to a page that had two options: log in or

sign up. After choosing the signup button they were taken to a page where they could create
an account. The account creation page asked the participant for their Amazon Mechanical Turk
(MTurk) ID and to create a password. There were no constraints for password creation, and the

bank.[institution domain]
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Fig. 1. Overview of the experimental system flow.

provided MTurk IDs were validated against the list of workers who accepted the task on MTurk. If
the participant clicked the Login button, they would be taken to a page asking for their MTurk ID
and their previously created password.

The next screen explained the study. In the study, we varied participants’ game condition, which
was a combination of experimental setting (Earn or Endowment), risk of hacking (H ), and protection
offered by 2FA (P ). Those in the Earn Setting (S : Earn) started with $1 in their account and could
earn an extra $1 per day up to a maximum of $5. Those in Endowment Setting (S : Endowment )
started with $5 and would lose that money if they did not log in once per day. In addition to varying
the conditions, we also transparently told participants their risk of getting hacked H . Hacking
was experimentally constructed: we ran a script every evening, randomly selected a number, and
“hacked” the participant (e.g., removed the money from their account) if the randomly selected
number was less than their effective risk; hacking probabilities were not affected by how frequently
participants chose to login. The participant’s effective risk was defined as eitherH (no 2FA selected)
or H ∗ (1 − P) (2FA selected), that is, the probability of being hacked modulated by the accepted
protection. In the initial consent form and study instructions it was made clear to participants that
the hacking was constructed and that there were not real hackers trying to break into their study
accounts.

Participants were randomly assigned one of three H values: 20% (a chance of hacking popularly
cited, which we use as a benchmark [Norton, 2012, Seymour, 2016, Taylor, 2016]), 1%, and 50%.
To convey this information, participants in S : Earn saw the message shown in the second screen
from the top in Figure 1. Those in S : Endowment saw a very similar message, which replaced the
second and third sentences in the message with: “You begin the study with $1 in your bank account.
Each time you login (at most once per day) you will earn an additional $1.”

Next, participants were offered the option to enable 2FA. We chose 2FA as the exemplar behav-
ior in our system because prior work finds that it is an “in-the-middle” behavior – understood
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better and adopted more often than updating, but less so than strong passwords [Redmiles et al.,
2016]. Additionally, it was easier to create a simple, realistic system around a binary 2FA choice
(enable/don’t enable) than around other security behaviors such as updating or browser warnings.

We were explicit about the amount of protection offered by 2FA, just as we were explicit about
the risk of being hacked. Participants were randomly assigned an arbitrarily chosen protection
value, P , of 50% or 90%. As defined above, that value was then used in the effective risk calculation
that led to a chance of “hacking” in our experiment. Thus, their effective risk was H (1 − P). To
communicate this, participants saw the following message: “Would you like to enable two factor
authentication using your phone number? Two factor authentication will protect you from hacking
P of the time.”

Those who selected 2FA went through SMS-based two-factor setup, where they received an initial
text with a four-digit code that they needed to enter before proceeding.1 Then, on all subsequent
logins, they received an SMS with a code and had to enter this code along with their password in
order to log in.

Finally, participants were shown their bank balance, and also reminded of when they must next
log in, for S : Endowment , or when they could next earn more money, for S : Earn.

Upon subsequent logins, participants would see the previously described login page where they
logged in using their MTurk ID, password, and, if they selected the option, 2FA. After logging
in, the participant was directed to their bank balance page. At the end of the study, on their last
login, they were shown a link to a Qualtrics survey which the user needed to complete in order to
receive payment. The survey used two validated measures, SeBIS [Egelman and Peer, 2015] and
the Web-Use Skills Index [Hargittai and Hsieh, 2012], to measure the participant’s general security
behavior intentions and internet skill; we also collected their gender, age, and education level.

Technical Details: Data Storage & Measurement. Our system was built using PHP 5.6.32. The
2FA validation was handled by the AuthyAPI. All data was stored in a secure database. Only the
hashed and salted password, not the cleartext password, was saved using the PHP password-hash
functionwith PASSWORD_DEFAULT. Passwords were verified using the PHP password-verify
function.
To measure password strength, we used the data-driven neural-network password meter [Ur

et al., 2017]. To record the signup and login times, we recorded the total number of seconds for
which the 2FA screen was in focus. We began recording when the page was loaded and stopped
recording focus time when the pages were submitted. That is, if a user went to the login page,
stayed on that page for five seconds, checked their email for two minutes, and finally came back to
the website and took another ten seconds to submit their login, we would have recorded a login
screen time of fifteen seconds. Table 5 in Appendix 11 provides a summary of all observed and
self-report collected variables.

3.2 Experimental Design
We recruited 150 workers from Amazon Mechanical Turk (MTurk) to participate in two rounds of
an experiment run on our bank system. We recruited only workers from the United States and those
who had a 95% approval rating or above, as prior work shows that these workers produce the highest
quality results [Peer et al., 2014]. Our advertisement stated that participants would be evaluating
a website for our institution and had the opportunity to earn up to $5. In the first experiment,
1While SMS-based 2FA has been shown to be insecure [Reaves et al., 2016], it is still the most broadly adopted 2FA standard.
Additionally, SMS-based 2FA provides a simple, quantifiable privacy and time cost for our experimental scenario: app-based
2FA would complicate cost calculations, as we would not know if certain users already had the application we chose installed
on their phones. For purposes of our experiment, the actual security offered by SMS-based 2FA in practice does not matter.
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participants completed a consent form andwere then redirected to create an account on the bank site.
They progressed through the steps described above, and were assigned to one of eight experimental
settings: H=1%, P=50%, Endowment and Earn (Low Risk); H=1%, P=90%, Endowment; H=20%,
P=50% Endowment and Earn; H=50% and P=50% Endowment; H=50% and P=90% Endowment
and Earn (High Risk). We selected a non-full-factorial design due to cost constraints; we selected
the following conditions that would maximize our ability to draw conclusions about the effect
of various risk levels as well as the endowment condition. The experiment ran for five days. All
participants who started the experiment were paid $0.50, and those who submitted their final
surveys were paid the amount remaining in their bank account (ranging from $0 through $5.00).

Five days after the conclusion of Round 1 (RD1), participants received an email through MTurk
inviting them to participate in the experiment again. They were told that things would work the
same way as last time, but that they needed to create a new account. Participants were again
randomly assigned to one of the eight experimental settings, with no relation to their RD1 settings.
When participants finished Round 2 (RD2) they were not asked to take the survey again, but were
again compensated as in RD1. Participants spent an average of a total of 142 seconds (Std. Dev =
34.57 (s)) logging in to RD1 and an average of a total of 158 seconds (Std. Dev = 30.40 (s)) logging
into RD2, plus an average of 6 minutes completing the survey after the first game.

3.3 Analysis
Our analysis consists of three components: (1) modeling security behavior as a function of the
variables measured and assigned in the games; (2) determining the degree to which participants’
behavior was utility-optimal, that is “rational,” and modeling the factors correlating with rational
decision-making; and (3) presenting a thought experiment showing how we could use this informa-
tion to predict utility-optimal behaviors for MTurker’s and how such predictions could be used to
nudge security behavior in the future. We describe our specific methodology for each analysis in
more detail in Sections 5 to 7. Table 6 in the Appendix summarizes the models we construct.

3.4 Limitations
Behavioral economics experiments are subject to a number of limitations: participants may behave
differently than in real life, our variables for the hack and protect percentages may be unrealistic,
and 2FA may not be a representative security behavior. We have done our best to mitigate these
limitations by setting our incentive in line with typical behavior economics incentives [Kamenica,
2012] and by choosing hack and protection percentages both higher and lower than real values
suggested by popular studies for the hack percentage, and we tried to pick protection values
that would provide information about whether people feel differently about a nearly “perfectly”
protective security behavior and a behavior that will only work half of the time. Finally, we chose
2FA as our exemplar behavior because prior work suggests it is a reasonable “middle-of-the-road”
in terms of user understanding and adoption [Redmiles et al., 2016].
It is also possible that the source of our sample, Amazon Mechanical Turk, and the fact that

our sample is not representative of the demographics of the US may have biased our results
(our participants are younger and more educated than the U.S. population, as is typicaly of AMT
samples [Ross et al., 2010]); additionally it is possible that those participants who lost their money
due to hacking or due to forgetting to log in would be far less likely to return their surveys or return
for the second round. We chose to use Mechanical Turk because census-representative survey
platforms do not allow for the deployment of experiments such as ours, and we experienced low
drop out rates (17% RD1, 15% RD2) suggesting that lack of compensation for participants who were
hacked or forgot to log in was not a significant source of bias.
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4 PARTICIPANT DESCRIPTIVES
125 of the original 150 participants completed RD1. 107 of these RD1 participants finished RD2.
The demographics of the two groups were nearly identical. Our samples were skewed slightly male
(54% in R1, 55% in R2). Our participants were more educated than the general population, with 51%
and 50% in each round, respectively, holding a college degree or above as compared to 28% of the
U.S. population [U.S. Census Bureau, 2014]. Finally, our samples are both skewed heavily younger
than the general population, with 70% of our participants under 40 years old compared to 40% of
the general population. Table 4 in the Appendix shows the demographics of our samples.

Our RD1 participants had amean internet skill score of 4.06 on theWeb-Use Skills Index [Hargittai
and Hsieh, 2012]; our RD2 participants had a mean internet skill score of 4.016 (this difference was
not significant by a Mann-Whitney U test). Our RD1 participants had a mean SeBIS score [Egelman
and Peer, 2015] of 3.17; RD2 participants had a mean SeBIS score of 3.16 (the difference in SeBIS
scores across rounds was not significant by a Mann-Whitney U test).

5 WHAT FACTORS DRIVE PEOPLE’S SECURITY DECISION-MAKING?
Analysis Approach. To model our participants’ behavior, we constructed binomial logistic regres-
sion models where enabling 2FA was the outcome variable. For modeling 2FA enablement in RD1,
we included the following input variables: the participant’s gender, age, educational level, internet
skill, security behavior intention and password strength, as well as the protect and hack percentages
presented, the setting (earn or endow), and two-way interactions between the latter three factors.
We used backward selection based on the Bayesian Information Criterion to select the model of
best fit [Spiegelhalter et al., 2002]. We report model fit using McFadden’s Pseudo-R2 [Cameron and
Windmeijer, 1997], approximating the percent of variance explained.

For modeling round two behavior, we construct three models: one with only RD1 behavior as
the input variable; one with RD1 behavior, RD1 signup time (not including time spent on 2FA),
and RD1 mean login time (not including time spent on 2FA); and one with RD1 behavior and
times as well as RD2 equivalents of the factors found to be relevant in the RD1 2FA enablement
model (a subset of: hack and protection percentages, demographics, password strength, the setting,
and relevant interactions) as the input variables. We chose to construct these models in order to
examine the relationship between security decision-making and anchoring effects,2 participants’
costs (e.g., tendency to login or signup slowly), and the relevant factors identified in RD1 (our
“blind” experiment, in which we do not yet know participants’ typical tendencies or costs). We do
not include whether the participant was hacked or lost money in RD1 because fewer than 10 such
participants returned to play in RD2, a quantity insufficient to provide robust regression results.
We compared the fits of our three models using likelihood ratio tests [Bentler and Bonett, 1980].

We report the results of all models, including log-adjusted regression coefficients (odds ratios),
95% confidence intervals for those odds ratios, p-values (with a significance threshold of 0.05),
pseudo-R2, and the results of model comparison tests, when appropriate.
Factors that Drive 2FA Decisions. 51% of participants in RD1 and 56% in RD2 chose to enable

2FA. These decisions varied by condition, as shown in Figure 2.
We model RD1 decisions to enable 2FA as a function of attributes of the respondent (gender, age,

education, internet skill), and security practices or savviness (security behavior intention, password
strength), and risks and conditions assigned to the participant (H , P , S), as well as interactions
between these risks and settings: interaction between endowment (T/F) and H and interaction
between endowment and P . We find that the model of best fit retains only the risk, protection, and

2The anchoring effect is a commonly shown psychological effect in which humans tend to stick with the first decision they
make or choice they are offered [Strack and Mussweiler, 1997].
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Endow, H=1%, P=50%

Endow, H=20%, P=50%

Earn, H=20%, P=50%
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Percent of Participants (per condition, Round 1)
0% 25% 50% 75% 100%

Didn't Turn on 2FA Turned on 2FA

Fig. 2. Percent of participants who enabled 2FA in each of our eight experimental conditions in RD1.

Variable O.R. C.I. p-value
Endowment 2.32 [1.44, 3.76] <0.001*
H 2.31 [1.22, 4.38] 0.011*
P 1.46 [1.22, 1.97] 0.043*
Endowment :P 3.61 [1.35, 9.67] 0.012*

Table 1. Logistic regression results for 2FA behavior in RD1. O.R. is the log-adjusted regression coefficient
(odds ratio), CI is the 95% confidence interval of that odds ratio, and p-values marked with * are significant
at the 0.05 level. Endowment is a boolean variable for whether the participant was in one of the endowment
conditions, H and P are numeric, and ’:’ indicates an interaction variable.

setting factors, as well as the interaction between setting and protect percentage (Table 1). Those in
the endowment conditions are 2.3 times more likely to enable 2FA, in line with endowment effects
observed in other fields [Acquisti et al., 2013, Knetsch, 1989].
Those who are shown a higher H , that is told that research shows a higher chance of account

hacking, are more likely to enable 2FA. Those shown a higher P , that is, those told 2FA will be
90% rather than 50% effective, are also more likely to enable 2FA, while those in a condition that
involved endowment and a higher P are even more more likely to enable than just accounting for
P or the endowment setting separately would suggest. This model explains 14.7% of the variance in
the RD1 data.3

As described above, we model RD2 decisions with three different sets of models. The model with
just RD1 behavior as an input factor indicates that those who enabled 2FA in RD1 are 83 times

3We note that this is likely a conservative interpretation of the effect; indeed, psychologists have suggested that R2 values
may appear deceptively low when modeling singular events (e.g., decisions) that tend to accumulate over time, and that
the true explanatory power of the significant variables in these cases may be stronger than a singular measurement
indicates [Abelson, 1985].
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Variable O.R. C.I. p-value
R1 2FA Decision 32.66 [2.19, 486.54] 0.011*
R1 Login Times 0.81 [0.6, 1.11] 0.190
R1 Signup Time 0.90 [0.69, 1.16] 0.411
Endowment 1.26 [0, 547.12] 0.094
P 17.09 [0.04, 144.74] 0.357
H 72.88 [0.57, 373.07] 0.063
Endowment :P 0.99 [0.91, 1.08] 0.822
R1 2FA:Login Times 1.12 [0.81, 1.56] 0.496
R1 2FA:Signup Time 2.41 [0.26, 22.02] 0.435

Table 2. Logistic regression results for 2FA behavior in RD2 modeled as a function of RD1 2FA decision, RD1
costs (login and signup times), and RD2 experimental settings. McFadden Pseudo-R2=0.612

more likely to do so in RD2 (Appendix Table 7) , in line with the expected anchoring effect. This
model explains 35.3% of the variance in our RD2 data. Next, we added RD1 costs (e.g., RD1 signup
and login times) to the model to understand whether RD2 behavior was explained just by repeating
RD1 behavior or also by learning from the costs of RD1 behavior. The model of best fit retained all
three factors, and we see that both login time in RD1 and RD1 behavior are significant in the model,
with those who enabled in RD1 being more likely to enable in RD2 and those who took longer than
others to login in RD1 being 6% less likely to enable 2FA in RD2 (Appendix Table 8). This model
explains the data significantly better than the prior model (p = 0.012) with pseudo-R2=0.522. Finally,
we built a third model that included these three RD1 factors as well as the experimental settings
retained in RD1. This final model shows only that enabling 2FA in RD1 is significantly related to
enabling 2FA in RD2, however, we find that this final model with the experimental variables fits
significantly better than the prior model (p = 0.040) and explains a total of 61.2% of the variance
(Table 2), suggesting that the costs and experimental settings are explanatory of behavior but not
as strongly as are anchoring effects.

6 DO PEOPLE MAKE RATIONAL SECURITY DECISIONS?
Analysis Approach. To examine whether participants made utility-optimal decisions and the
factors related to the rationality of those decisions, we considered participants to have made a
utility-optimal decision in the following way: it is utility-optimal to enable 2FA if the cost of doing
so is less than the expected utility that would be gained from 2FA. For those who enabled 2FA in
either round, we compute the cost of using 2FA for an individual user as the time it cost them to
sign up (in hours) plus the sum of the time it cost them to log in each time (in hours) times their
hourly wage:C2fa = (Tsignup +

∑
Tlogin) ∗waдemturk . To compute the value of our participants’waдe

we used the data collected in the Pew 2016 survey about MTurk workers [Hitlin, 2016] to compute
a population-based estimate of $4.97/hr (calculations in Appendix 12) . For those who did not use
2FA, and in any analysis in which we use the full dataset (that is the data of those who enabled and
did not enable 2FA), we estimate the cost of 2FA. A sensitivity analysis reveals a linear pattern in
estimations: considering 2FA cost as the mean results in an estimate of more rational choices than
considering 2FA cost as 2× or 3× the mean. To generate conservative estimates of rational behavior
we continue our computations by estimating 2FA cost for those who did not enable as 2× the mean.

We compute the utility of using 2FA as the potential loss (maximum amount they could earn
times hack percentage) times the protection gained by using 2FA (P ): U2fa = P[(H ) ∗ Maxbank].
Where Maxbank was $5 for our experiment, and is the value of the money in an MTurker’s account
for the third analysis.
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Fig. 3. Percentage of participants in each round and with a given risk setting who made a utility-optimal
decision about 2FA.

Below we examine whether 2FA users made utility-optimal decisions. We also examine the
proportion of utility-optimal decisions made by our sample as a whole using the mean cost of
enabling 2FA (computed from those who did choose to use it). To compare the strength of the
associations between the decisions made in each round, we use a χ 2 test with Cramér’s V as our
measure of effect size and use Holm-Bonferroni correction to account for multiple comparisons .

Finally, we model whether participants’ decisions were utility-rational using regression models.
We construct these models using a similar approach to that described in Section 5, with RD1 utility-
optimal decision-making being modeled as a function of the participant’s gender, age, educational
level, internet skill, security behavior intention and password strength, as well as the protect and
hack percentages presented, the setting, and two-way interactions among the latter three factors.
RD2 utility-optimal decision-making (True or False) was modeled with two models: the first was a
single-factor model containing only whether the RD1 decision was utility-optimal, and the second
included the same factors as in RD1 as well as the RD1 decision. We performed backward selection
on this second model to achieve a model of best fit for RD2.

Were Participants’ Decisions Rational?We find that, following the approach described above,
48% of all participants made utility-optimal decisions in RD1 and 58% did so in RD2.

We also consider behavior at the extremes: that is, the lowest and highest risk conditions, as well
as in the middle. We find that, in RD1, 33% of participants in the lowest-risk settings (e.g., did not
enable 2FA), 48% in the medium risk, and 63% in the highest risk settings make a utility-optimal
decision (e.g., enabled 2FA 4). We observe a learning effect (χ 2 = 21.226, df= 2, p < 0.001, V = 0.578
(medium)) with 58% of all participants in the medium-risk experiments making a rational decision
in RD2, 46% in the lowest-risk settings and 75% in the highest-risk settings. Figure 3 compares the
change in utility-optimal behavior by risk level for the rounds.

Modeling utility-optimal decision making. We wanted to understand how these different
factors, as well as participant factors, interacted to potentially explain whether participants’ make
utility-optimal decisions.

We first model whether participants made a utility-optimal 2FA decision in RD1 in the same way
as we modeled general decision-making for RD1 in Section 5 above. The model of best fit retains
only the hack percentage, setting, and internet skill factors (Appendix Table 9; pseudo-R2=0.141).
Those in the endowment setting are 25% more likely to make a utility-optimal choice, while those
4In our particular experiment, using 2FA was always utility-optimal in the highest risk setting and never in the lowest.
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with higher internet skill are 15% more likely to do so. Further, we see that those who saw a higher
hack percentage are more likely to make a utility-optimal decision in RD1.
For RD2, we find that a single-factor consisting of only whether the RD1 decision was utility

optimal is not significant. After backward selection, the multi-factor model of best fit retains SeBIS,
the risk and protection factors, endowment, and interactions between risk and endowment and
protection and endowment (Appendix Table 10; psuedo-R2=0.078). We see that those with higher
SeBIS scores are nearly four times more likely to have made a utility-optimal decision in RD2,
and (similar to RD1) those who saw a higher hack percentage are 21% more likely to make a
utility-optimal decision.

7 THOUGHT EXPERIMENT: WHEN DOES SECURITY BENEFIT THE MARKET?
In order to examine the impact of different models of user behavior on market costs and utility
from security, we present a simple thought experiment regarding the implementation of optional
2FA on the MTurk platform.

Approach. Suppose that MTurk decided to offer a 2FA option to workers. Workers who enable
2FA then must use 2FA every time they log in, exactly as in our experiment. We know from prior
work [Hitlin, 2016] that 63% of MTurkers log in daily, 32% multiple times a week (for the purposes
of our thought experiment, we say 3× per week), 3% log in weekly, and the rest log in less than
once a week. Using costs (as defined in Section 6) from our experiment, this means 2FA would cost:
C2f a = 0.065 ∗waдemturk + 0.039 ∗ N (loдins) ∗waдemturk . Using this equation, we see that each
week using 2FA would cost the daily login group $0.34, the 3× a week login group $0.18, and the
weekly login group $0.10.

Suppose also that MTurkers transfer the money they earn out of their accounts once per week,
so the value of their bank (e.g., the money they stand to lose if their account is hacked) is the value
of their weekly earnings. Not all MTurkers earn the same amount on MTurk; prior work shows
that 17% earn all of their income on MTurk, 8% earn most (75%), 6% earn half (50%), 15% earn some
(25%), and 53% earn very little (5%) of their income on the platform. We estimate, based on reports
from the population that those who earn all or most of their income on MTurk make $38,555 per
year or $741 per week in total, with either 100% or 75% of that income coming from MTurk. Those
who earn half or less of their income on MTurk earn a higher overall income of $54,300 or $1044
per week, but only 5%-50% of that income comes from MTurk. The header of Table 11 shows the
estimated weekly earnings – that is, the amount of money an MTurker would stand to lose – for
the different categories of earnings.
Finally, we estimate the utility gained from 2FA for some people at an arbitrarily selected 1%

risk of hacking over the course of the year and for others at an arbitrary 20% risk of hacking over
the course of the year. We suppose in this thought experiment that 25% of people might choose
weak passwords, thus having a hypothetically supposed 20% risk of hacking over the course of
the year. The remaining 75% of the population we theorize have a 1% risk of hacking. Thus, the
utility of 2FA in a given week would be calculated as follows (with a conservatively assumed 50%
protection value):U2f a = P(H ∗ Income)/52. We again consider enabling 2FA to be utility optimal
in cases where the utility is greater than the cost.

It is important to note that we choose fairly arbitrary values for this thought experiment, so the
results should be considered as an example rather than taken literally. However, we believe this
example (as with prior theoretical work that uses a similar approach [Herley, 2009]) provides a
useful perspective for thinking carefully about when and how to advise users.

Results. We find that under the above assumptions, for all but those who earn the least on
MTurk ($52 per week) those who are at a 20% risk of hacking and who log in more than once a
week should always enable 2FA. Those that log in once a week could enable 2FA or not enable 2FA
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Approach Costs Utility Loss/Gain
All Secure $275 $148 (-) $126
Utility Optimal $32 $128 (+) $96
No Security $0 $0 $0∗

Table 3. Estimated costs, utility, and loss or gain from each of the security approaches. Figures are per 1000
MTurk users. *We use the [Herley, 2009] model, in which users sustain no losses from hacking, to compute
this value. If users sustained losses, the value would instead be $266.

with no discrepancy in outcome, as the cost of enabling and the utility gain are equal. For those
who earn the least on MTurk, it is never utility optimal to enable 2FA.

Based on these calculations, we compute the cost and utility, and the overall gain or loss,
from the three different recommendations for user security: users should always take all security
precautions, users should never take security precautions, and users should take utility-optimal
security precautions. Table 3 summarizes the results per 1000 MTurkers. We see that utility-optimal
behavior leads to a gain of $96 per 1000 MTurkers, while an “enable security always” solution leads
to a cost of $126 per 1000 MTurkers, and a “never enable security” solution leads to a gain of $0.
Estimates suggest that there are 500,000 MTurkers active at any given time [Hitlin, 2016]. Using
this estimate, requiring all MTurkers to use 2FA would cost the market $63,606, while providing
MTurkers with nudges for suggested behavior that is utility-optimal would lead to a gain of $47,865
if all MTurkers behaved optimally and $23,932 if 50% chose a utility optimal behavior. Of course,
the current option of not presenting 2FA leads to no gain or loss.

More generally, assuming that 2FA offers protection only 50% of the time, we find that for those
who have $741 in their accounts (e.g., earn $741 weekly and withdraw their income once per week)
there need only be a 1.5% chance of their account being hacked over the course of the year for
there to be utility gain from 2FA. For those who login weekly, a 2.7% risk for those who login three
times a week, and a 4.9% risk for those who login daily. Similarly, for those who earn half their
income from MTurk ($522) and login weekly there need only be a 2.2% chance of their account
getting hacked over the course of the year for there to be utility gain from 2FA. (These figures
include only monetary losses, not time losses or emotional consequences from cleaning up from
hacking; including these costs would cause 2FA to become utility optimal at even lower risks.) On
the other hand, for those who earn very little (or keep very little money in their MTurk accounts),
the risks must be very large — 68% for daily logins or 21% for weekly logins — for 2FA to be utility
optimal. Table 11 in the Appendix summarizes different risk and income levels at which 2FA may
be utility optimal.

8 DISCUSSION
Make Risks, Costs, and Benefits Transparent. Overall, we find that explicitly stated risks and
utilities (e.g., benefits) appear to explain between 9% (Round 2) and 15% (Round 1) of the variance in
our participants’ behavior. While participants lean heavily on anchoring effects (e.g., their typical
practices) and to a lesser extent their knowledge of their own costs (e.g., how long it takes them
to perform a login) when settling on a behavior, the additional contribution of risk and utility
variables to the variance explained suggests that numeric descriptions of risk and benefit are at
least partially informing users’ security decision making. This finding agrees with prior findings in
privacy that showed people were able to pick between different platforms verbally described to be
more or less privacy protective [Tsai et al., 2011]. These findings consequently offer support for
making risk and benefit information more transparent to users. Rather than telling people they
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“should adopt behavior X to be more secure” we may wish to give them more autonomy over their
choices.
Inherently, making risks (or benefits from a given behavior) more transparent requires us to

know what the risk or benefit of a particular attack or behavior is to the user. Measuring this risk
effectively is a challenging open problem [Herley, 2017]. Recent work, such as that conducted by
Bilge et al. and Thomas et al. [Bilge et al., 2017, Thomas et al., 2017], pushes for more scientific and
measurement oriented approaches to assessing the potential for an attack or the benefit of a security
behavior. Our results provide additional motivation for this research direction, and present a parallel
direction for future work exploring how best to convey risk to users (e.g., exploring how they
interpret and respond to different textual and numeric estimates of risk), as well as investigating
how explicit risk communication may factor into existing legal and policy frameworks around
digital security and privacy disclosure.

Recommend Utility-Optimal Behaviors. In our experiment, being able to compute a cost
for an individual’s security behavior and their expected utility from that behavior allows us to
predict what users should do in a particular security decision-making scenario. A similar principle
could be used in a real-world system to develop personalized security recommendations to guide
users toward utility-optimal behaviors, rather than always trying to encourage adoption of security
behaviors. That is, by measuring users’ typical time to complete certain behaviors (e.g., login),
their implicit risk (e.g., password strength, security settings), and the history of attacks on a given
platform for users with a similar risk profile, systems may be able to offer users personalized,
suggested behaviors.
For example, a platform could display a message similar to the following on login or when the

user is confronted with a security decision: “Our personalized security analysis system suggests
that two-factor authentication may be a good fit for securing your account. We expect to take only
an additional 30 seconds of your time.” While prior work has found that encouraging users to adopt
behaviors that their friends have adopted [Das et al., 2014] can succeed, doing so may not always be
of benefit to the user. A more carefully personalized system that takes into account the utility-cost
ratio for the user, as well as other factors unexplored here, such as risk aversion, may offer a more
trustworthy set of suggestions that are respectful of user time and reduce their security burden.

Security-Savvy Not Necessarily Safer. Our findings reveal that security-savvy, measured by
password strength and SeBIS score, had no impact on choice to enable 2FA, and an inconsistent
impact on rationality of decision. We had anticipated a relationship between 2FA use and password
strength (or security behavior intention), either that stronger passwords (or more security intention)
would indicate higher paranoia that would correlate with more 2FA use, or that those who picked
weaker passwords would be more likely to enable 2FA, suggesting a tradeoff between the two
risk-reducing behaviors. Instead, we find only a relationship between explicitly stated risks (e.g.,
the chance of getting hacked that we conveyed to them). This suggests that users treat different
security behaviors independently without considering them as a package that influences overall
risk or may be unaware of the relationship between their own choices (e.g., the strength of the
password they pick) and their risks. If so, they may have difficulty making rational choices.

Thus, future work may wish to explore users’ level of understanding of the risks of their security
choices, how they think these risks interact, and investigate how to correct resultant misperceptions.
Additionally, we may wish to understand the efficacy of translating user choices into explicit risk
assessments; for example, instead of presenting a scale of password strength from weak to strong,
present password strength in terms of risk of account compromise.

Future Work. The work presented here takes a first step toward measuring the rationality of
user decision-making, assessing the contexts in which more and less rational behavior occurs, and
understanding how risks, costs, and user factors influence decisions in security. Our experimental
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scenario presents the simplest of situations: with explicit, monetary, easily characterizable costs
and risks. Future work may wish to explore rationality of decision making around data or other
non-monetary assets and the impact of non-numeric risk statements, or explore other cognitive
biases, e.g., present bias [Gravin et al., 2016, Kleinberg et al., 2016, 2017]. Learning and/or comparing
against other models of bounded rationality is of practical interest [Hartford et al., 2016, Wright
and Leyton-Brown, 2014]. Additionally, our experiment only explores users’ choice to enable 2FA,
and indirectly their choice of password strength. Future work should validate, or invalidate, these
results with other security behaviors.
Finally, our results show that self-report measures of security behavior intention and internet

skill were not related to 2FA enablement behavior. However, we see evidence that skill and/or
intent may be related to the rationality of decision-making. This suggests that self-report measures
may be ineffective at predicting or assessing behaviors — a finding supported by extensive work
in other fields [Fendrich and Vaughn, 1994, Redmiles et al., 2017, Tourangeau and Yan, 2007] —
but may be useful in assessing more deeply underlying constructs that are related to rationality.
Future work should seek to further explore the utility of self-report measures for assessing security
behavior, and whether experimental systems such as that presented here more, less, or equally as
useful as self-reporting for measuring real-world behavior.

9 CONCLUSION
In this work we explore the rationality of decisions made by end-users when faced with security
choices. We validate that, at least in our relatively realistic experimental scenario, end-users behave
in accordance with bounded rationality. That is, they are able to take into account some, but not all,
risk and context factors and make rational (e.g., utility optimal) decisions in more than 50% of cases.
We find, further, that we are able to explain user decision making well (McFadden Pseudo-R2=0.61)
by accounting for participants’ knowledge of costs and risks as well as accounting for the known
phenomena of endowment and anchoring effects.

We find that our participants made utility-optimal decisions more often when faced with higher
risks. While perhaps encouraging for corporate high-risk scenarios, this finding also suggests a
challenge for day-to-day security, as many of the risks end users confront in daily digital life are
less transparent, less monetarily linked, and relatively small. Thus, future work may wish to explore
how rationality is affected by different methods of communicating risk, less tangible consequences
than the monetary incentives provided in our experiments, and even smaller risks.

Using our data to compute utilities and costs for 2FA on the Amazon Mechanical Turk (MTurk)
platform, we show that a “one-size-fits-all” approach encouraging all users to engage in all security
behaviors at all times can lead to significant market and individual losses. However, we also show
that there are relatively low risk thresholds at which 2FA becomes utility optimal, leading to
significant market gains. This underscores the importance of quantifying the risk and utility of
security behaviors through data-driven research [Bilge et al., 2017, Thomas et al., 2017] in order to
ensure that risks, costs, and benefits are accurately understood.

Overall, our work supports a nuanced model of the “human-in-the-loop” who is able to somewhat
take into account explicit risks and personal costs, in addition to relying on typical tendencies (e.g.,
anchoring effects), to make frequently rational decisions but who struggles to identify less obvious
risks such as those incurred from weak passwords. This argues for personalized security-behavior
recommendations for users tailored based on their costs (e.g., login times), risks (e.g., password
strength), and value of their account (e.g., measured through the amount of money stored), especially
in cases where the optimal behavior for them goes against their typical tendencies. If accurate, such
personalized recommendations could provide security benefits while helping to avoid large market
and personal costs from wasted time and effort on non-utility-optimizing security behaviors.
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APPENDIX
10 PARTICIPANT DEMOGRAPHICS
Table 4 describes the demographics of the MTurk users who participated in both rounds of our
experiment. The table compares their demgoraphics to those of the U.S. Census [U.S. Census
Bureau, 2014]. Note that our participants are more educated (51% and 50% of the participants in the
rounds, respectively, hold a B.S. compared to 28% of the U.S. population) and younger (74% and
73%, respectively, are under the age of 39 compared to 40% of the U.S. population).

Metric Round 1 Round 2 Census

Male 54% 55% 49%
Female 45% 44% 51%

HS or Less 13% 13% 28%
Some College 36% 37% 31%
B.S. or Above 51% 50% 28%

18-29 years 31% 32% 23%
30-39 years 43% 41% 17%
40-49 years 15% 15% 17%
50-59 years 8% 9% 18%
60+ years 2% 2% 25%

Table 4. Demographics of participants in our sample. Some percentages may not add to 100% due to item
non-response. Census statistics from the American Community Survey [U.S. Census Bureau, 2014].
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11 VARIABLES MEASURED IN THE EXPERIMENT
In Table 5 we summarize the variables measured in our experiment and subsequently included in
our regression analyses. We outline the variable, method of measurement, and data source (either
observations from game play in our system or the self-report survey administered to participants
after RD1).

Variable Method of Measurement Data Source
2FA Decision Enabled/Didn’t Enable System

Password Strength Data-Driven Neural-Network Password Strength [Ur et al., 2017]. System

Signup & Login Times Seconds each screen was in focus on participant’s browser. System

Internet Skill Validated measure of web-use skills [Hargittai and Hsieh, 2012]. Survey

Security Behavior Intention Validated measure of security behavior intention [Egelman and Peer, 2015]. Survey

Gender Male/Female/Other Survey

Education HS or less/Some college/Bachelors or above Survey

Age Numeric Survey

Table 5. Variables measured in our experiment.



Elissa M. Redmiles, Michelle L. Mazurek, and John P. Dickerson 21

12 COMPUTATION OF MTURKWAGE
Here we outline our computation of the average MTurk wage for the population. The figures in
the computation were drawn from a Pew Research survey of Amazon Mechanical Turk workers,
which provides wage estimates for different portions of the MTurk population [Hitlin, 2016].

waдemturk = 0.01($12) + 0.03($10) + 0.04($8)
+ 0.07($7) + 0.11($6) + 0.2($5) + 0.52($4)

= $4.97/hr
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13 REGRESSION MODELS AND TABLES
13.1 Models Constructed
Table 6 summarizes the regression models that we constructed during our analysis and references
the tables in which the results of these models are contained.

Outcome Var Input Vars Result Table
R1 2FA Decision S, H, P, H:S, P:S, age, gender, education, IS, pwd.

strength, SeBIS
Section 5 Table 1

R2 2FA Decision R1 2FA Decision Appendix Table 7
R2 2FA Decision R1 2FA Decision, R1 Login Time, R1 Signup Time,

interactions between times and 2FA decision
Appendix Table 8

R2 2FA Decision R1 2FA Decision, R1 Login Time, R1 Signup Time,
interactions between times and 2FA decision, S, H, P,
P:S

Section 5 Table 2

R1 2FA Rationality S, H, P, H:S, P:S, age, gender, education, IS, pwd.
strength, SeBIS

Appendix Table 9

R2 2FA Rationality S, H, P, H:S, P:S, age, gender, education, IS, pwd.
strength, SeBIS

Appendix Table 10

Table 6. Regression models constructed. S stands for setting (Earn or Endowment, with Earn as baseline); H
is a numeric variable for Hack percentage; P is a numeric variable for protect percentage; gender is a boolean
variable with Male as the baseline; education is a three-level categorical variable with HS education or less as
the baseline; decisions in prior rounds are boolean with False as the baseline; and IS (internet skill), SeBIS
(security behavior intention), age, time measurements, and pwd. (password) strength are numerics. Input
vars shown in table for R1 2FA Decision are those that were included prior to backward selection, only S, H, P,
and P:S were retained after model selection.

13.2 Results Tables
The tables below present full regression model results for all findings presented in the text. We
report the variable (one of those from Appendix 11), the log-adjusted odds ratio for the coefficient
of that variable (O.R.), the 95% confidence interval (C.I.) for that O.R., and the p-value (where the
significance threshold is 0.05).

Variable O.R. C.I. p-value
R1 2FA Decision 83.11 [21.17, 326.24] <0.001*

Table 7. Logistic regression results for 2FA behavior in RD2 modeled as a function of RD1 (R1) 2FA decision.
McFadden Pseudo-R2=0.353.
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Variable O.R. C.I. p-value
R1 2FA Decision 94.81 [22.04, 407.8] <0.001*
R1 Login Times 0.94 [0.83, 0.97] 0.037*
R1 Signup Time 0.92 [0.73, 1.16] 0.484
R1 2FA:Login Times 1.10 [0.82, 1.47] 0.514
R1 2FA:Signup Time 2.20 [0.32, 15.26] 0.423

Table 8. Logistic regression results for 2FA behavior in RD2 modeled as a function of RD1 (R1) 2FA decision
and RD1 costs (mean login time and signup time in RD1, both time measures do not include time spent on
2FA screens if 2FA was enabled). McFadden Pseudo-R2=0.522.

Variable O.R. C.I. p-value
Endowment 1.25 [1.05, 1.49] 0.015*
IS 1.15 [1.03, 1.29] 0.015*
H 15.38 [10.89, 21.73] <0.001*

Table 9. Binomial logistic regression model with whether the participant made a utility-optimal decision in
RD1 as the output factor and internet skill score, condition, and hack percentage as inputs, after backward
selection. McFadden Pseudo-R2 = 0.141.

Variable O.R. C.I. p-value
Endowment 0.17 [0.01, 4.51] 0.293
H 1.21 [1.01, 1.87] 0.041*
P 1.03 [0.99, 1.90] 0.109
SeBIS 3.89 [1.12, 13.46] 0.039*
Endowment:H 1.02 [1.01,1.14] 0.09
Endowment:P 76.49 [0.41, 4162.32] 0.103

Table 10. Binomial logistic regression model with whether the participant made a utility-optimal decision in
RD2 as the output factor and SeBIS score, condition, hack percentage, and protect percentage (as well as
interactions between the latter three factors) as inputs, after backward selection. McFadden Pseudo-R2=0.078.
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