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small (which is true in many real-world applications). Leveraging this QPTAS, we give efficient algorithms
to find such equilibria and experimental results showing they work well on simulated data.

We then built a policy recommendation engine based on vector equilibria, called PREVE. We use PREVE
to model the terrorist group Lashkar-e-Taiba (LeT), responsible for the 2008 Mumbai attacks, as a five-
player game. Specifically, we apply it to three payoff matrices provided by experts in India-Pakistan rela-
tions, analyze the equilibria generated by PREVE, and suggest counter-terrorism policies that may reduce
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1. INTRODUCTION
The research reported in this paper was motivated by a concrete application: how can
countries trying to rein in the terrorist group Lashkar-e-Taiba1 (LeT for short) come up
with policies against them, especially if these policies need to be coordinated? In the
case of a five-player game we formulated for LeT (presented later), there were wide
variations of opinion amongst experts on what to do about LeT with respect to, for
instance, whether India should carry out covert action, carry out coercive diplomacy,
propose peace talks, or just keep the status quo. Likewise, the US has historically
had multiple opposing viewpoints on whether to continue financial (development and
military aid) to Pakistan, whether to carry out covert action against LeT, or do nothing.
Analyzing the benefits of these actions even in the case of a single actor (e.g., only India
or only the US) has proven challenging. The main contribution of this paper is a multi-
player, game-theoretic framework in which this specific problem can be solved.

However, we wanted to come up with a general solution, one that is applicable to
many different settings. For instance, there are many applications where the “payoff
matrices”, usually one of the very first things needed in any game-theoretic framework,
cannot be specified with accuracy. When asked about payoffs, multiple experts might
express substantial disagreements. This is what happened with our LeT application.
Here are some applications where multiple payoff matrices have been considered in a
wide variety of settings.

(1) Socio-Cultural Behavior Modeling. Woodley et al. [2008] propose a “Culturally
Aware Response” (or CAR) framework in conjunction with the well-known World
Values Survey to assess the results of different types of interactions between cul-
turally different groups. They use multiple payoff matrices in their framework
which vary based on the historical behaviors of different groups, e.g., one payoff
matrix may indicate situations where a player responds in kind to responses of
other players, while another payoff matrix may reflect situations where the player
is largely non-violent.

(2) Open Source Software Releases. Asundi et al. [2012] analyze the circumstances that
are optimal for companies to release software. They argue that by open-sourcing a
“crimped” version of their product, a company can hurt competitors, while enabling
sales of a more sophisticated pay version of their product. To build their model, the
authors utilize four different payoff matrices, corresponding to different regions of
the parameter space that defines their model.

(3) International Climate Change Negotiations. Pittel and Rübbelke [2012] develop a
game-theoretic model of climate change negotiations building upon the well-known
chicken game and the iterated prisoner’s dilemma. The two games are combined
into a 3ˆ3 game and studied under different payoff scenarios.

(4) Telecommunications. Karami and Glisic [2010] define asymmetric matrix games
(AMG) with which they model routing and network coding using conflict-free
scheduling mechanisms. In their framework, multiple payoff matrices are defined,
with one payoff matrix corresponding to each of a set of different partial possible
network topologies.

Other applications include international negotiations [Kraus et al. 1995] where the
precise payoffs for the nations involved are viewed through different lenses by dif-
ferent experts. They can also include applications where there are different views on

1Lashkar-e-Taiba (LeT), translated variously from Urdu into “Army of the Pure” or “Army of the Pious”,
is a prominent south Asian terrorist organization responsible for attacks in India, Kashmir, Pakistan, and
Afghanistan, including the three days of attacks in 2008 in Mumbai, India, that resulted in the deaths of
166 innocent people [Tankel 2011a; Subrahmanian et al. 2012].
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Table I. The actions that different players can take.

Player Action Abbrv.

Lashkar-
e-Taiba
(LeT)

Launch major attacks attack
Eliminate armed wing eaw
Hold attacks hold
Do nothing none

Pakistan’s
Government
(PakG)

Prosecute LeT pros
Endorse LeT endorse
Do nothing none

Pakistan’s
Military
(PakM)

Crackdown on LeT crack
Cut support to LeT cut
Increase support to LeT support
Do nothing none

India

Covert action against LeT covert
Coercive diplomacy against PakG coerce
Propose peace initiative to PakG peace
Do nothing none

U.S.

Covert action against LeT covert
Cut aid to PakG cut
Expand aid to PakG expand
Do nothing none

the payoffs different corporations get for taking different types of actions (e.g., raise
wages for striking workers vs. shut down a factory vs. take legal action). Even a seem-
ingly simple action such as “take legal action” can lead to a diversity of views about
costs/payoffs as different views may exist on, e.g., how long the litigation will take (and
hence how much it will cost). Our paper has two parts:

— Approximate Equilibria for Multi-Player Games with Vector Payoffs. Games with
multiple payoffs were introduced by Shapley [1959]. Shapley called them vector val-
ued games and they have been extensively studied under various other names such
as multicriteria games and multi-objective games. Unfortunately, for real-world ap-
plications such as the LeT application motivating this research, the computational
cost of these past methods is too high. In order to address this, we introduce a novel
combination of vector valued games and approximate equilibria and define new
types of approximate equilibria for games with multiple players and multiple payoff
matrices. We design algorithms for computing such equilibria for zero-sum games
and games of low rank. For the case of rank 1 games, we give a structural result and
use it to design a simple algorithm for such games. For general games we give an
extension of Althöfer’s Approximation Lemma [1994] for simultaneous games with
multiple payoff functions (SGMs) and use it to design a quasi-polynomial time ap-
proximation scheme (QPTAS) when the number of players in a game is constant
(which is the case for our LeT game).

— Application of PREVE to Generate Policies to Reduce Terror Acts by LeT. Building on
work by Dickerson et al. [2011; 2013], we then present a real-world application in
which there are five parties including four governmental entities and the terrorist
group Lashkar-e-Taiba (LeT). The goal was to understand whether there were any
pure (or mixed) equilibria in which the group’s terrorist acts could be significantly
reduced. The five players considered are: the US, India, the Pakistani military, the
Pakistani civilian government, and the terrorist group LeT. Table I shows the ac-
tions the players were allowed to take.
When it comes to the application of game-theoretic reasoning to international strate-
gic elements [Schelling 1960] with both state and non-state actors, the situation be-
comes much more complex because identifying the payoffs for different players is an
enormous challenge and experts vary widely on what these payoffs are. To address
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this application, we asked three internationally acknowledged world experts to give
us payoff matrices—and we received three payoff matrices with substantial differ-
ences between them. Leveraging the theoretical constructs and results described
above, we built the PREVE (Policy Recommendation Engine based on Vector Equi-
libria) software suite, and used it to identify approximate equilibria in the multiple
payoff game induced by the three expert payoff matrices. We present key results
produced by PREVE, and analyze their strengths and weaknesses from a policy per-
spective.
When it comes to the application of game-theoretic reasoning to international strat-
egy [Schelling 1960] with both state and non-state actors, the situation becomes
much more complex because identifying the payoffs for different players is an enor-
mous challenge and experts vary widely on what these payoffs are. To address this
application, we asked three internationally acknowledged world experts to give us
payoff matrices—and we received three payoff matrices with substantial differences
between them. Leveraging the theoretical constructs and results described above,
we built the PREVE (Policy Recommendation Engine based on Vector Equilibria)
software suite, and used it to identify approximate equilibria in the multiple payoff
game induced by the three expert payoff matrices. We present key results produced
by PREVE (Policy Recommendation Engine based on Vector Equilibria), and ana-
lyze their strengths and weaknesses from a policy perspective.

The paper begins with Section 2 introducing our LeT example briefly. As the LeT
example is quite complex, a small toy example is also introduced. This toy example is
used throughout the paper in order to illustrate the various definitions and algorithms
we introduce. Section 3, our first formal section, consists of preliminaries which cover
basic game-theoretic concepts. Section 5 formally defines our equilibrium concepts and
presents bounds on computing them under various assumptions. Section 6 presents a
QPTAS for the general case, when the number of players is constant. Building on this
QPTAS, it gives efficient algorithms for computing such equilibria and experimentally
validates them on simulated data. Section 7 gives a brief description of the computa-
tional system we built, called PREVE, and applies it to a real-world experimental five-
player game used to model LeT. Section 7 also summarizes results from computing
equilibria from three payoff matrices (created by area experts using open source data)
and presents key policy results. Section 8 describes related work on game-theoretic
models of terrorist group behavior as well as past policy recommendations on how the
US and India should deal with LeT.

2. MOTIVATING EXAMPLES
In this section, we briefly describe the LeT application motivating this research. We
also introduce a toy example that will be used throughout the paper to illustrate defi-
nitions, as the full LeT example can be too complex for that.

2.1. Reducing Terror Attacks by LeT
Lashkar-e-Taiba (LeT) is a terrorist group primarily funded by the Pakistani intel-
ligence agency, the Inter-Services Intelligence [Winchell 2003]. Created in 1990, the
group has carried out numerous terrorist attacks, the most spectacular of which was
the November 2008 terrorist attack in Mumbai that targeted several sites including
the iconic Taj Mahal hotel, killing 166 innocent civilians (as well as nine terrorists,
while a tenth terrorist was captured). LeT has strong links to various other terrorist
groups including Al-Qaeda, Indian Mujahideen, Jaish-e-Mohammed, Jabhat-al-Nusra
in Syria, groups in Chechnya, Jemaa Islamiyah, as well as organized crime groups
such as Dawood Ibrahim’s D-Company. For instance, Al-Qaeda leader Khalid Sheikh
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Mohammed was captured in an LeT safehouse in Pakistan. Given its technical so-
phistication and the support of a sophisticated intelligence agency, LeT is viewed as a
major threat by both the US and India—both in terms of operations they might carry
out themselves and in terms of training and logistics support they might provide to
other groups that carry out such attacks.

In order to reduce terror attacks by LeT, we developed a five-player game. The play-
ers considered are the United States (US), India, Pakistan’s government, Pakistan’s
military, and Lashkar-e-Taiba (LeT). We recall that Table I, presented earlier, gives
actions each player can take, and that—in addition to the actions below—each player
can take the action none, which corresponds to doing nothing. We describe the other
actions in depth here.
US Actions. The US can take three actions (and none).

(1) The first is covert action against LeT. While we do not suggest specific operations,
this action could be implemented in many ways including covert actions to under-
mine LeT’s leaders or covert actions to target LeT training camps. It is clear that
the US is capable of such covert action as evidenced by recent events involving a
CIA contractor called Raymond Davis who was arrested by the Pakistanis after a
shootout in Lahore.

(2) The US could also cut military and/or development support currently being given
to Pakistan. According to the Congressional Research Service, the US provided
$1.727 billion in economic aid to Pakistan in FY2010.2 In 2012, the US asked
Congress for permission to ship almost $3 billion to Pakistan with over half be-
ing military aid.3 Cutting some of this aid is an option the US has long considered,
especially in view of US Admiral Mike Mullen’s assertions in 2011 about Pakistan’s
ISI controlling the Haqqani terrorist network which in turn attacked the US em-
bassy in Kabul.4

(3) The US could also expand financial support for Pakistan. Pakistan’s educational
system and economy are both in shambles and some have argued that additional
development assistance would wean young people away from radical elements.

India’s Actions. As with the US, we study three actions (and none) that India might
take. Similarly, there are many ways in which India could tactically implement these
actions.

(1) Like the US, India can also take different forms of covert action against LeT using
methods similar to those listed above for the US.

(2) India can also use coercive diplomacy in which diplomatic moves are used to co-
erce Pakistan. For instance, a credible threat can be used to warn Pakistan of the
consequences of carrying out certain actions. For coercive diplomacy to be effective,
the threat must be made publicly and must be credible [Schelling 1960]. Credible
threats could include withholding water by diverting the headwaters of the Indus
or by troop movements or simply by ramping up military spending which would
place pressure on other parts of the Pakistani economy.

(3) A third option we consider is one where India proposes some kind of peace initia-
tive to Pakistan, e.g., granting some additional rights for back and forth movement
between India and Pakistan, unifying families in Kashmir who were split up by
the partition of Kashmir, and so forth.

2See “Pakistan-U.S. Relations: A Summary,” by K. Alan Kronstadt of the Congressional Research Service,
May 16, 2011.
3http://www.foxnews.com/topics/us-aid-to-pakistan-fy2012-request.htm
4http://www.nytimes.com/2011/09/23/world/asia/mullen-asserts-pakistani-role-in-attack-on-us-embassy.html?
pagewanted=all& r=0
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Pakistan Military Actions. We study three possible actions for the Pakistani mili-
tary, all related to their support for LeT.

(1) The Pakistani military could implement a crackdown on LeT by arresting LeT
members and/or closing down LeT’s training camps, shutting down the logistical
support for LeT operations in Jammu and Kashmir, and taking steps to interdict
LeT-allied organizations like Jamaat-ud-Dawa. Pakistani security has, at times,
cracked down on LeT, e.g., after the December 2001 parliament attack and the
November 2008 attacks in Mumbai.

(2) The Pakistani military could cut support to LeT by, e.g., arresting military officers
who are illicitly supporting LeT and stopping military training of LeT personnel.

(3) The Pakistani military could also expand support for LeT, e.g., by increasing its
logistical and materiel support as well as financial support.

Pakistan Government Actions. We consider just two possible actions (in addition
to none) by the civilian side of the Pakistani government (excluding the military side).

(1) The Pakistani government could prosecute and arrest LeT personnel, as they have
done periodically (though the leaders are usually released shortly thereafter).

(2) The Pakistani government could choose to endorse LeT’s social services program
by routing government services through them. LeT runs many social services in
Pakistan ranging from ambulances to hospitals, schools, and disaster relief pro-
grams.

Lashkar-e-Taiba’s Actions. In the case of LeT, we considered three actions (in addi-
tion to the none action).

(1) LeT could launch a major attack. We already know from the November 2008 Mum-
bai siege that they have the capability and logistical support to execute such at-
tacks.

(2) LeT could hold attacks (but not major ones), similar to those periodically carried
out by them in Kashmir where military and civilian personnel are frequently tar-
geted.

(3) LeT could do something dramatic like eliminate its armed wing, give up its
weapons, and publicly renounce violence. Though extremely unlikely, this is still
worth listing as a possible action.

2.2. A Toy Example
We now introduce a small example that will be used to illustrate formal concepts and
definitions as they are introduced later in the paper. Consider a very simple game
consisting of two players, a terrorist group T and a government G. Suppose the ter-
rorist group can carry out two actions (terror-attack and peace) and the government
can carry out two actions (CT-ops and peace). Here, CT-ops denotes some traditional
counter-terror operations such as killing and arresting group members. Experts are
divided on the values of these actions to each player and thus provide two payoff ma-
trices, PM 1 and PM 2.

CT-ops peace
terror-attack p´5,´5q p3,´10q

peace p´8, 6q p0, 0q

CT-ops peace
terror-attack p´5, 6q p3, 3q

peace p´5,´5q p´5, 2q
PM 1 PM 2

Much of our analysis is for games with payoffs in r0, 1s. Note that a scaled and trans-
lated version of the above matrices that does not alter equilibria of the game can be
constructed. The modified payoff matrices (rounded to hundredths) are given below.
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CT-ops peace
terror-attack p0.31, 0.31q p0.81, 0q

peace p0.12, 1q p0.62, 0.62q

CT-ops peace
terror-attack p0, 1q p0.73, 0.73q

peace p0, 0q p0, 0.64q
Scaled PM 1 Scaled PM 2

In each of these tables, the rows show terror group T ’s actions and the columns show
the governmentG’s actions. For example, the entry p3,´10q in PM 1 says that the payoff
to the terror group is 3 and the payoff to the government is ´10 when the terror group
performs terror-attack and the government proposes peace.

We will use this simple motivating example to illustrate various concepts in this
paper.

3. TECHNICAL PRELIMINARIES: APPROXIMATE EQUILIBRIA
In this section, we first review common game-theoretic models and equilibrium con-
cepts (§3.1), then build on them to define approximate equilibria in games with multi-
ple payoff functions (§4).

3.1. Approximate Equilibria in Games with a Single Payoff Function
We consider simultaneous multiplayer games. Let rns “ t1, 2, . . . , nu be the set of play-
ers and rms “ t1, 2, . . . ,mu be the set of actions for each player. Let ∆m be the simplex
tpx1, x2, . . . , xmq|

ř

iPrms xi “ 1, xi ě 0,@i P rmsu.5

For any player j, any σj P ∆m is a probability distribution over the set of actions
rms; thus, σj is called a strategy for player j. If σj “ px1, x2, . . . , xmq, then xi is the
probability that player j will perform action i. When all but one of the xi’s in σj are 0,
σj is called a pure strategy; otherwise, it is called a mixed strategy. In mixed strategies,
a player probabilistically chooses which action to take. Note that we will calculate
these mixed strategies from the multiple payoff matrices provided by experts. They
are not inputs to our algorithms (and so experts do not have to provide them); they are
outputs generated by our system.

We use ∆ to denote the set Πn
j“1∆m. Any σ P ∆ is called a strategy profile for a game.

If σ “ pσ1, . . . , σnq P ∆, then σj denotes the strategy of the player j. For convenience,
we can represent a strategy profile σ as pσj , σ´jq, where σj represents the strategy of
player j and σ´j represents strategies for the rest of the players.

Example 3.1. Consider the toy example given in Section 2.2. An example pure
strategy for the government G is to play action CT-ops. Similarly, a pure strategy for
the terror group T is to play action terror-attack. An example of a mixed strategy for
G is to play action CT-ops and action peace with probabilities of 1

3 and 2
3 , respectively.

Similarly, T could play action terror-attack and action peace with probabilities 1
2 and

1
2 , respectively. The above mixed stategies for G and T together form a stategy profile
for the game.

The payoff for a player j is a function uj : ∆ ÞÑ r0, 1s. In this section, we assume
(without loss of generality) that all payoffs are in the unit interval r0, 1s. We now define
a basic building block of game theory, the Nash equilibrium.

Definition 3.2. A strategy profile σ is a Nash equilibrium iff:

ujpσ
j1, σ´jq ď ujpσq @σ

j1 P ∆m, j P rns

5For ease of exposition, we assume identical action spaces rms for each player i P rns. We note that the model
can easily be adapted to handle non-identical action spaces; indeed, our experimental results (Section 7) are
performed in such a heterogeneous model.
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Thus, a strategy profile is a Nash equilibrium if no player has incentive to deviate
from his strategy, assuming all other players play their respective strategies. Classical
game theory assumes that players are rational. Hence, players can reason about one
another and identify the Nash equilibria that are possible and then typically play
actions consistent with one such Nash equilibrium. As Schelling [1960] observes, a
good amount of work may also be invested by players in “prepping” the game so that
certain strategy profiles are excluded from being equilibria.

Example 3.3. Consider the mixed strategy given in Example 3.1. G plays action
CT-ops and action peace with probabilities 1

3 and 2
3 , respectively. Similarly, T plays

action terror-attack and action peace with probabilities 1
2 and 1

2 , respectively. In this
case, as per the payoff matrix PM 1 (defined in Section 2.2), the payoff for G is ´5 ˚ 1

3 ˚
1
2`´10˚ 2

3 ˚
1
2`6˚ 1

3 ˚
1
2`0˚ 2

3 ˚
1
2 “ ´

19
6 . We note that the payoff for a given strategy profile

is the expected payoff given players draw actions independenty at random according
to their respective strategies. A Nash equilibrium for the same game is for G to play
CT-ops with probability 1 and for T to play terror-attack with probability 1, resulting
in a payoff of ´5 for both players.

Since Nash equilibria are notoriously difficult to compute [Chen and Deng 2006;
Daskalakis et al. 2006a], recent work has focused on finding approximate Nash equi-
libria. We use a well-known notion of an approximate Nash equilibria.

Definition 3.4. A strategy profile σ is an ε-approximate Nash equilibrium for some
0 ď ε ď 1 iff:

ujpσ
j1, σ´jq ď ujpσq ` ε,@σ

j1 P ∆m, j P rns. (1)

A stricter notion of an approximate Nash equilibrium is the well-supported ap-
proximate Nash equilibrium. Let Spσq, the support of a strategy σ P ∆m, be the set
Spσq “ ti | σi ą 0u. Intuitively, the support of σ is the set of actions that are executed
with nonzero probability. Daskalakis, Goldberg, and Papadimitriou [2006a] define a
well-supported approximate Nash equilibrium as follows.

Definition 3.5. Suppose 0 ď ε ď 1 is a real number. A strategy profile σ is a well-
supported ε-approximate Nash equilibrium iff:

ujpei, σ
´jq ď ujpel, σ

´jq ` ε @σj1 P ∆m, i P rms,

l P Spσjq, j P rns

In other words, for a strategy to be a well-supported ε-approximate Nash equilibrium,
every player’s incentive to deviate from his equilibrium strategy is very small (less
than a utility of ε). Put another way, this stronger constraint is imposed by forcing any
pure strategy i P rms to be given 0 probability (i.e., to not be included in the support
Spσq) if its expected payoff is more than ε below the best response payoff.

Definition 3.4 and Definition 3.5 both define approximate Nash equilibria that are
additive in nature (due to the `ε term in the right side of the definition). A multi-
plicative (relative) approximation can be defined as follows, due to [Daskalakis et al.
2006a].

Definition 3.6. A strategy profile σ is a well-supported relative ε-approximate Nash
equilibrium for 0 ď ε ď 1 iff @j P rns, i P rms:

p1´ εqujpei, σ
´jq ď ujpel, σ

´jq,@l P Spσjq (2)

The following example illustrates these different notions of approximate equilibria.
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Example 3.7. Consider the strategy profile from Example 3.1.G plays action CT-ops
and action peace with probabilities 1

3 and 2
3 , respectively. Similarly, T plays action

terror-attack and action peace with probabilities 1
2 and 1

2 , respectively. For T , this is
an ε-approximate Nash equilibrium with ε “ 1.5 since the expected payoff for T is´1.17
and deviation to action terror-attack leads to a payoff of 0.33. This is a well-supported
ε-approximate Nash equilibrium for T with ε “ 3 because the payoff for action peace,
which is in the support of T ’s strategy, is ´2.67 and deviation to terror-attack leads
to a payoff of 0.33—a gain of 3.00.

4. APPROXIMATE EQUILIBRIA IN GAMES WITH MULTIPLE PAYOFF FUNCTIONS
In this section, we merge together the ideas of (well-supported) approximate Nash
equilibria and Shapley’s vector payoffs in an effort to combine multiple conflicting ex-
perts’ knowledge of payoffs.

Definition 4.1. A simultaneous game with multiple payoff functions (SGM) is a
triple G “ pn,m,Uq where rns is a set of players, rms is the set of actions for each
player in rns, and U “ pU1, U2, . . . , Uf q consists of f ordered sets of payoff functions
Uk “ pu

k
1 , u

k
2 , . . . , u

k
nq,@k P rf s.

Intuitively, an SGM G can be viewed as f different games specified over a set of
players, over the same strategy space, with payoff functions for players given by Uk, k P
rf s. We refer to these f individual simultaneous games as constituent games of G.
Throughout this paper, we use the variable f to denote the number of payoff matrices
considered—which is also equal to the number of constituent games in a SGM or a
ZSGM (a zero-sum version of an SGM defined later in Section 5.1).

For instance, in our toy example, the game G consists of two different constituent
games, one corresponding to each of the two payoff matrices.

We now merge the idea of an approximate Nash equilibrium (Definition 3.4) with
that of Shapley’s vector payoffs.

Definition 4.2. A strategy profile σ is a multiple ε-approximate Nash equilibrium of
an SGM pn,m,Uq, iff it is an ε-approximate Nash equilibrium for each of its constituent
games. Specifically, for all k P rf s:

ukj pσ
j1, σ´jq ď ukj pσq ` ε, @σ

j1 P ∆m, j P rns (3)

Building on Definition 4.2, we also combine well-supported approximate Nash equi-
libria (Definition 3.5) with vector payoffs.

Definition 4.3. A strategy profile σ is a well-supported multiple ε-approximate Nash
equilibrium of an SGM pn,m,Uq, iff it is a well-supported ε-approximate Nash equilib-
rium for each of its constituent games. That is, for all k P rf s:

ukj pei, σ
´jq ď ukj pel, σ

´jq ` ε @σj1 P ∆m, i P rms,

l P Spσjq, j P rns

Finally, we can define the multiplicative version of Definition 4.3 as well.

Definition 4.4. A strategy profile σ is a well-supported multiple relative ε-
approximate Nash equilibrium of an SGM pn,m,Uq iff it is a well-supported rela-
tive ε-approximate Nash equilibrium for each of its constituent games. Thus, for all
k P rf s, j P rns, i P rms:

p1´ εqukj pei, σ
´jq ď ukj pel, σ

´jq, @l P Spσjq (4)
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We now provide an example of a well-supported multiple ε-approximate Nash equi-
librium in the context of our toy game.

Example 4.5. For the game defined in Section 2.2, consider the strategy profile
where T plays action terror-attack with probability 1 and G plays action CT-ops with
probability 1. For both the payoff matrices, PM 1 and PM 2, this is a Nash equilib-
rium. Therefore, the given staregy profile is a well-supported multiple ε-approximate
Nash equilibrium with ε “ 0. Consider another strategy profile, where G plays action
CT-ops and action peace with probabilities 1

3 and 2
3 , respectively. Similarly, T plays ac-

tion terror-attack and action peace with probabilities 1
2 and 1

2 , respectively. This is a
well-supported multiple ε-approximate Nash equilibrium with ε “ 5.5. This is because
in one of the payoff matrices, PM 1, the payoff G receives from action peace in support
is ´5 and deviating to action CT-ops leads to a payoff of 0.5 leading to a gain of ε “ 5.5.

A well-supported multiple ε-approximate Nash equilibrium is “close” in payoff for
each player to a (Nash or approximate Nash) equilibrium in the constituent game cor-
responding to each payoff matrix in the SGM. A well-supported multiple ε-approximate
Nash equilibrium closely approximates equilibrium situations irrespective of which of
the several experts’ payoff matrices is used—it is a robust.

For notational convenience, in the experimental section of this paper, we will refer
to well-supported multiple ε-approximate Nash equilibria computed using only U 1 Ď U
payoff functions as pε, `q-equilibria, where |U 1| “ `. Such equilibria computed with the
full set U are simply written as ε-equilibria.

5. APPROXIMATE EQUILIBRIA IN SIMULTANEOUS GAMES WITH MULTIPLE PAYOFF
FUNCTIONS

We begin by analyzing two fairly constrained cases, zero-sum games (§5.1) and rank 1
games (§5.2). We then relax these assumptions, providing results for low-rank games
(§5.3), which will later lead into results on general games where the number of players
is constant (§6.2).

5.1. Zero-sum Games with Multiple Payoffs
We begin by extending the well-known linear program (LP) for computation of an exact
Nash equilibrium in zero-sum games to the computation of an approximate Nash equi-
librium, and subsequently use it to design an algorithm to compute multiple payoff
equilibria in such games. We will focus on the zero-sum equivalent of a simultaneous
game with multiple payoff functions, as defined by Definition 5.1.

Definition 5.1. A zero-sum simultaneous game with multiple payoff functions (for
two players) (ZSGM) is an SGM p2,m,Uq, with ordered set of payoff functions U “

pu1, u2, . . . , uf q such that uk (´uk) is the payoff function for player 1 (player 2) @k P rf s.
For convenience, we denote such games G “ pm,Uq.

Note that ZSGMs are limited to just two players.
Let pm,Uq, where U “ pu1, u2, .., uf q, be a ZSGM. Let P “ pr1, r2, . . . , rf q, ri P

r0, 1s,@i P rf s. Consider the following LP:

LPf pU,P, εq
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ÿ

iPrms

σ1
i “ 1

σ1
i ě 0,@i P rms
ÿ

iPrms

σ2
i “ 1

σ2
i ě 0,@i P rms
ÿ

iPrms

σ1
i u

kpei, ejq ě rk ´ ε,@j P rms, k P rf s (5)

ÿ

iPrms

σ2
i u

kpei, ejq ď rk ` ε,@j P rms, k P rf s (6)

Here, the first four equations are required because σ1 and σ2 are distributions over
actions of players 1 and 2 respectively. Equations (5) and (6) are required because we
want players to play strategies that are approximate best responses to each of the
constituent games of the ZSGM.

For f “ 1, this LP applies to a zero-sum game with scalar payoff function u “ u1. For
this special case, we call this LP, LP1

pu, r, εq. Lemma 5.2 and Lemma 5.3 show that for
the single payoff function case, the linear program LP1 computes approximate Nash
equilibria for zero-sum games. Thus, our framework neatly extends approximate Nash
equilibria to the case when there are vector-valued payoffs. The next result states that
any solution to the linear program given above yields an approximate Nash equilib-
rium.

LEMMA 5.2. Any feasible solution to LP1
pu, r, ε2 q is an ε-approximate Nash Equilib-

rium for a zero-sum game with u as payoff function for player 1.

The following result says that every ε-approximate Nash equilibrium is a solution of
the linear program LP given above.

LEMMA 5.3. Any ε-approximate Nash equilibrium strategy profile pσ1, σ2q for a
zero-sum game with payoff function u for player 1 such that payoff for player 1 is in
rr ´ ε, r ` εs, ε ě 0 is a feasible solution to LP1

pu, r, 2εq.

Lemma 5.4 and Lemma 5.5 below extend the above results (which apply when f “ 1,
i.e., when there is only one payoff function) to the case of zero-sum games with multiple
payoff functions. The first result, analogous to Lemma 5.2, states that solutions of the
above LP are multiple payoff ε-approximate equilibria.

LEMMA 5.4. Any feasible solution to LPf pU,P, ε2 q is a multiple payoff ε-approximate
equilibrium for the ZSGM pm,Uq.

The next result, analogous to Lemma 5.3 states that for every multiple payoff ε-
approximate equilibrium, there is a corresponding solution of the above LP.

LEMMA 5.5. Let σ “ pσ1, σ2q be a strategy profile that is a multiple payoff ε-
approximate equilibrium for the ZSGM pm,Uq. Let P “ pr1, r2, . . . , rf q be the vec-
tor of payoffs for player 1 for each of the constituent games of the ZSGM. Let P 1 “
pr11, r

1
2, . . . , r

1
f q be a vector such that |ri ´ r1i| ď ε,@i P rf s. Then σ is a feasible solution to

LPf pU,P, 2εq.

Thus, LP f pU,P, εq precisely captures the entire set of multiple payoff ε-approximate
equilibria of our zero sum game.
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Algorithm 1 presents a method to compute the set of all approximate ε-equilibria
in the multiple payoff case. The algorithm uses an input e in order to regulate the
approximation error factor, ε.

ALGORITHM 1: Approximate Multiple Payoff ε-Equilibrium in Zero-sum Games
Input: e, set of payoff functions U “ pu1, u2, . . . , uf q
Output: A set of LPs (see Theorem 5.6 for details)
S Ð t 0

e
, 1
e
, . . . , 1u

Payoffs Ð
Śf

i“1 S /* Cardinality: pe` 1qf */
LP Set ÐH

for P P Payoffs do
LP Set Ð LP Set Y LPf pU,P, 1

e
q

return LP Set

The result below shows that Algorithm 1 computes certain types of multiple-payoff
approximate equilibria.

THEOREM 5.6. Algorithm 1 runs in time Oppe ` 1qf p2mf ` 2m ` 2qq and outputs
a set of LPs. Let S be the union of feasible regions of all LPs in the set returned by the
algorithm. Then S satisfies the following conditions:

(1) All strategy profiles in S are approximate multiple payoff ε-equilibria with ε “ 2
e .

(2) All multiple payoff ε-equilibria with ε “ 1
2e are in S.

5.2. Multiplayer Games of Rank 1
We now deal with the problem of finding equilibria in low-rank multiplayer games
with multiple payoffs. Our real-world LeT application is one example of a low rank
multiplayer game.

The definition of rank that we use is equivalent to one given by Kalyanaraman and
Umans [2007]. As is evident from recent papers (e.g., [Lipton et al. 2003; Kannan and
Theobald 2007; Kalyanaraman and Umans 2007; Theobald 2009; Adsul et al. 2011]),
games of low rank have generated considerable interest.

In this section, we first define multiplayer games of rank K. We then give a com-
plete characterization of Nash equilibria for these games when K “ 1 and use this
characterization to compute well-supported relative ε-approximate Nash equilibria.

Definition 5.7. A multiplayer game of rank K is a game where the payoff func-
tion for each player is specified by K n-tuples of vectors, each of length m. Let
αj,k “ pα1,j,k, α2,j,k, . . . , αn,j,kq be the tuple specifying the payoff function for player j.
Let ρ “ pea1 , ea2 , .., eanq be a strategy profile with only pure strategies for each player,
where ai is the action for player i. Then, the payoff for player j is defined as:

ujpea1 , ea2 , .., eanq “
ÿ

kPrKs

ź

iPrns

αi,j,kai (7)

For a strategy profile, σ “ pσ1, σ2, .., σnq, payoffs are defined as usual. Let A “

rms ˆ rms ˆ ..ˆ rms
loooooooooooomoooooooooooon

n times

be the set of all possible combinations of actions of all players.
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Then, payoffs are given by:

ujpσq “
ÿ

aPA

ź

iPrns

σiaiujpea1 , ea2 , .., eanq (8)

“
ÿ

aPA

ź

iPrns

σiai

ÿ

kPrKs

ź

lPrns

αl,j,kal
(9)

We note that each payoff matrix is of rank at most K and it is input as a rank-K
decomposition. As can be seen from Equation 7, the payoff matrix for player j is a sum
of K terms and the kth term is the tensor product of vectors in tuple αj,k. This is a
complicated definition, so let us consider the case when K “ 2. In this case, the payoff
matrix is implicitly specified by two vectors, each of length m (the number of actions).
Consider the strategy profile ρ “ pea1 , ea2 , .., eanq. This strategy profile tells us what
actions each of the n players is taking. From Equation 9, in a rank K “ 2 game, we
compute the payoff for player 1 (i.e. j “ 1) as

Πn
i“1α

i,1,1
ai `Πn

i“1α
i,1,2
ai .

The following example uses our toy example to illustrate rank K games.

Example 5.8. As an example, we give a rank-2 decomposition of payoff ma-
trix PM1 of player T given in Section 2.2. A rank-2 decomposition of the ma-
trix is α1,1,1 “ t´1.76,´2.54u, α2,1,1 “ t3.05,´0.55u, α1,1,2 “ t´1.30, 0.90u, α2,1,2 “

t´0.28,´1.56u. It can be easily verified (up to rounding error) that for T , PM1 “

α1,1,1pα2,1,1qT ` α1,1,2pα2,1,2qT . A similar decomposition of PM1 for G is given by
α1,2,1 “ t´3.25, 0.99u, α2,2,1 “ t1.92, 2.81u, α1,2,2 “ t0.67, 2.18u, α2,2,2 “ t1.88,´1.28u.
Therefore, the game specified by PM1 is a rank-2 game.

For the special case of rank 1 games, we drop the superscript k from vectors αi,j,k.

5.2.1. Nash Equilibria for Rank 1 Games. The following result presents a complete char-
acterization of Nash equilibria for multiplayer games of rank 1.

LEMMA 5.9. Let σ be a mixed strategy profile. Let u1´jpσq “
ś

iPrnsztjup
ř

lPrms σ
i
lα
i,j
l q.

Let the support of player j’s strategy be Sj “ tl|αj,jl “ maxpαj,jqu. σ is a Nash equilib-
rium iff:

u1´jpσq ą 0 ùñ supportpσjq Ď Sj

In the rest of this section, we assume that all players have a non-zero payoff at
equilibrium, since, for any general multiplayer game, if a player has a zero payoff at
equilibrium, which is the minimum possible payoff for the game, then her maximum
and minimum possible payoffs are both zero for any choice of action and the player is
free to take any action in her equilibrium strategy.

5.2.2. ε-Approximate Multiple Payoff Equilibria for Rank 1 Games. We now give a character-
ization of well-supported relative ε-approximate Nash equilibria. Here we solve the
multiplicative approximation problem which is harder than the additive approxima-
tion for normal form games [Daskalakis 2011].

LEMMA 5.10. A strategy profile σ “ xσ1, σ2, . . . , σny is a well-supported relative ε-
approximate Nash equilibrium (with a non-zero payoff for all players) for a multiplayer
game of rank 1 with payoffs as specified in Section 5.2.1 iff:

αj,ji ě p1´ εqpmaxαj,jq,@j P rns, i P Spσjq (10)
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We now prove the main result for this section and give an algorithm for the computa-
tion of well-supported multiple relative ε-approximate Nash equilibria in multiplayer
games of rank 1. The following theorem is the main result for this section.

THEOREM 5.11. Consider an SGM of rank 1 with f different payoff functions
for each player. For t P rf s, let payoff function k for player j be specified by tuple
pα1,j,k, α2,j,k, . . . , αn,j,kq. Then, a strategy profile σ “ pσ1, σ2, . . . , σnq is a well-supported
multiple relative ε-approximate Nash equilibrium, iff @j P rns:

αj,j,ki ě pmaxαj,j,kqp1´ εq, i P Spσjq, k P rf s (11)

Algorithm 2 leverages this result to compute well-supported multiple relative ε-
approximate Nash equilibria for rank-1 games.

ALGORITHM 2: well-supported multiple relative ε-approximate Nash equilibria in rank-1
games
Input: ε, payoff vectors αi,j,t

Output: Allowed actions in supports of a feasible strategy profile
for i P rms, j P rns do

if @t P rf s, αj,j,t
i ě pmaxαj,j,tqp1´ εq then

Add i to actions in support of player j’s strategies.
if there exists any player with empty support set then /*If any support is empty the profile is infeasible*/

return NULL
else

return The support sets constructed in the for loop

We use a variant of our toy example to explain Algorithm 2.

Example 5.12. As an example, consider a rank-1 game where Player 1 is T and
Player 2 is G. Let a rank-1 PM1 for T be α1,1,1 “ t1, 0.5u, α2,1,1 “ t0.5, 1u. Let, a similar
PM1 for G be given by α1,2,1 “ t1, 0.25u, α2,2,1 “ t1, 0.25u. Let PM2 for T be given by
α1,1,2 “ t0.75, 1u, α2,1,1 “ t0.75, 1u. Let PM2 for G be given by α1,2,2 “ t0.75, 1u, α2,2,2 “

t1, 0.75u. Let ε “ 0.5. Then for PM1, all mixed strategies for T are well-supported
relative ε-approximate Nash equilibria. For G only action CT-ops can be in the sup-
port. For PM2, all mixed strategies for both the players are well-supported relative ε-
approximate Nash equilibria. Therefore, a strategy profile where T plays some mixed
strategy and G plays action CT-ops is a well-supported multiple relative ε-approximate
Nash equilibrium with ε “ 0.5.

5.3. Multiple Payoff Games of Low Rank
In this section we consider the general case of multiplayer games of low rank (Defini-
tion 5.7). We prove that a class of strategies called “uniform strategies” (which we will
define shortly) can be used to compute approximate Nash equilibria for these games
when the number of actions is small. We then leverage this result to design an algo-
rithm that computes the set of all multiple payoff equilibria for such games.

In this and the next section, we focus only on uniform strategies. Uniform strategies
provide a tradeoff between simplicity and optimality that may be valuable to the end
user. For example, in the LeT game we study later in the paper, a policy prescription
like “India should take covert action against LeT with probability 0.0071” may not be
very useful to the end user. A simpler policy prescription that is almost as good may
be a much better option. We now define a uniform strategy profile.
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Definition 5.13. A strategy profile σ “ pσ1, σ2, . . . , σnq is a t-uniform strategy profile
if, @i P rns,@j P rms:

σij P t
`

t
| ` P t0, 1, . . . , tuu

Intuitively, a t-uniform strategy discretizes the r0, 1s real-valued interval into t seg-
ments and considers two probabilities within the same segment to effectively be the
same. Thus, as t gets bigger, we get finer granularity. Thus, our selection of t controls
the granularity of the probability distribution on actions in a strategy. A smaller t
leads to a coarse-grained, simple strategy whereas a larger t allows a more fine grained
strategy that may be closer to an optimal strategy.

5.3.1. Approximate Nash Equilibria in Games of Low Rank. In this subsection, we construc-
tively prove that a uniform strategy profile can be used to approximate a Nash equilib-
rium for multiplayer games of low rank. First, we state the following lemmas to help
with the main result.

LEMMA 5.14. Let α be a vector of length m such that each element of α is in r0, 1s.
Let σ be vector of length m. Let σ1 be a vector such that |σi ´ σ1i| ď ε,@i P rms. Then
|αTσ ´ αTσ1| ď mε.

LEMMA 5.15. Let x1, . . . , xn be n reals such that 0 ď xi ď 1,@i P rns. Let x11, . . . , x1n
be n reals such that 0 ď x1i ď 1, |xi ´ x

1
i| ď ε,@i P rns. Then |

ś

iPrns xi ´
ś

iPrns x
1
i| ď nε.

The main technical result of this subsection is that if a strategy profile is a well-
supported multiple ε-approximate Nash equilibrium, then there exists a t-uniform
strategy profile that is also a well-supported multiple ε-approximate Nash equilibrium
with a slightly higher value of ε. However, the simpler lemma below—dealing with the
single payoff case—provides the basis for the more complex theorem to follow.

LEMMA 5.16. Let the strategy profile σ “ pσ1, σ2, .., σnq be a well-supported ε-
approximate Nash equilibrium for the given game of rank k. Then there exists a t-
uniform strategy profile σ1 that is a well-supported ε ` 2pn´1qmk

t -approximate Nash
equilibrium.

We now extend Lemma 5.16 to the multiple payoff case pertaining to well-supported
multiple ε-approximate Nash equilibria.

THEOREM 5.17. Let the strategy profile σ be a well-supported multiple ε-
approximate Nash equilibrium with ε “ τ for the given SGM, all of whose constituent
games are rank k games. Then, there exists a t-uniform strategy profile σ1 that is a
well-supported multiple ε-approximate Nash equilibrium, with ε “ τ ` 2pn´1qmk

t .

6. COMPUTING MULTIPLE PAYOFF APPROXIMATE EQUILIBRIA
Building on the theoretical results of the last section, we now provide an efficient algo-
rithm for computing well-supported multiple ε-approximate Nash equilibria in games
where the number of players is constant. First, we present a grid search algorithm for
computing equilibria (§6.1), and show that is efficient through a quasi-polynomial time
approximation scheme (QPTAS) (§6.2). This algorithm is validated on simulated data
in Appendix A, and on real data in the next section (§7).

6.1. Algorithm for Computation of Equilibria
We leverage Theorem 5.17 to present Algorithm 3 which searches over the space of
all uniform strategy profiles and outputs those that are well-supported multiple ε-
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ALGORITHM 3: well-supported multiple ε-approximate Nash equilibrium for constant rank
games
Input: t, payoff functions for the SGM
Output: t-uniform well-supported multiple ε-approximate Nash equilibrium strategy profiles
S Ð Set of all possible t-uniform strategies
E ÐH

Σ Ð
Śn

i“1 S /* Cardinality: Opmknq */
for l P rf s do

/* f is the number of constituent games of the SGM */
El ÐH

for σ P Σ do
isEquilibrium Ð TRUE
for j P rns do

if not isEquilibrium then
break

payoff Ð uljpσq

for i P rms do
payoff i Ð uljpei, σ´jq

if payoff i ´ payoff ą ε then
isEquilibrium Ð FALSE
break

if isEquilibrium then
El Ð El Y tσu

return E1 X E2 X . . .X Ef

approximate Nash equilibria. Input parameters to the algorithm are t and payoff func-
tions for the constituent games. We assume that each payoff function is given as an
oracle, which, given the strategy profiles, returns a vector with payoffs for all play-
ers. The output of the algorithm is the set of all t-uniform strategy profiles which are
well-supported multiple ε-approximate Nash equilibria for the given SGM.

The algorithm first chooses a strategy profile and checks if it is an equilibrium (e.g.,
by solving the linear programs presented earlier in the paper). For each payoff function
in the list of f payoff functions, it then iteratively looks at pairs of players, trying to set
payoffs that are sufficiently close to each other in an attempt to find an equilibrium. It
iteratively adds any valid solutions found to the solution and returns the solution at
the end. Via Theorem 5.17, this coarse grid search is guaranteed to find a “reasonable”
overall equilibrium (with respect to the parameter t).

The following example illustrates Algorithm 3 on our running toy example.

Example 6.1. We note that a well-supported multiple ε-approximate Nash equilib-
rium exists for the game with ε “ 0. This is the common equilibrium for both pay-
off matrices when T plays action terror-attack and G plays action CT-ops. Thus, to
guarantee ε “ 0.2, we require t “ 40 for this game. For illustrative purposes, to avoid
enumeration of all strategies required for ε “ 0.2, we use the algorithm as follows.
We enumerate all t-uniform strategies and report only those strategies that are well-
supported multiple ε-approximate Nash equilibrium with ε “ 0.2.

We note that strategy profiles given in rows 1 through 4 of the above table are com-
mon Nash equilibria with ε “ 0. All the other 3-uniform profiles have ε ą 0.2. Thus
strategy profiles in the first 4 rows are all the 3-uniform well-supported multiple ε-
approximate Nash equilibria of the given game.

Though this algorithm can be expected to yield reasonable running times for games
of any rank, the guarantees shown in Theorem 5.17 only apply to low rank games.
This algorithm has the added advantage that we do not need to compute the tensor
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T strategy G strategy ε for T ε for G Max ε
terror-attack peace CT-ops peace PM 1 PM 2 PM 1 PM 2

1 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.00 0.00 0.67 0.33 0.00 0.00 0.00 0.00 0.00
3 1.00 0.00 0.33 1.00 0.00 0.00 0.00 0.00 0.00
4 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
5 0.67 0.33 1.00 0.00 0.19 0.33 0.00 0.03 0.33
6 0.67 0.33 0.67 0.33 0.19 0.33 0.24 0.03 0.33
7 0.67 0.33 0.33 1.00 0.25 0.33 0.73 0.03 0.73
8 0.67 0.33 0.00 1.00 0.19 0.33 0.73 0.03 0.73
9 0.33 1.00 1.00 0.00 0.19 0.48 0.00 0.55 0.55

10 0.33 1.00 0.67 0.33 0.19 0.48 0.24 0.55 0.55
11 0.33 1.00 0.33 1.00 0.25 0.48 0.73 0.55 0.73
12 0.33 1.00 0.00 1.00 0.19 0.48 0.73 0.55 0.73
13 0.00 1.00 1.00 0.00 0.19 0.38 0.00 0.00 0.38
14 0.00 1.00 0.67 0.33 0.19 0.38 0.24 0.00 0.38
15 0.00 1.00 0.33 1.00 0.25 0.38 0.73 0.00 0.73
16 0.00 1.00 0.00 1.00 0.19 0.38 0.73 0.00 0.73

decomposition of the game matrix. As we will show in Section 6.2, uniform strategies
are expected to provide good results on general games too.

6.2. A General Approximation Lemma for SGMs
We prove the existence of a QPTAS for SGMs when the number of players is constant
(which is the case in our example game as well as in most real world strategic games).
For this we first state and prove an approximation lemma (an extension to SGMs of
Althöfer’s Approximation Lemma [1994]). Our approximation lemma states that if a
well-supported multiple ε-approximate Nash equilibrium exists for an n-player game,
then there is a well-supported multiple ε-approximate Nash equilibrium for the game
using a t-uniform strategy with a slightly larger ε.

We note that the original version of Althöfer’s Approximation Lemma applies only
to two-player bimatrix games and its straightforward application leads to a QPTAS for
computing well-supported ε-approximate Nash equilibria for two-player games. How-
ever, our extension of the lemma to multiplayer games with multiple payoffs is not
straightforward. In the multiplayer setting, the variables we consider are mutually
overlapping products of independent random variables. Hence, to apply Hoeffding’s
bound [1963], we iteratively discretize strategies of players.

LEMMA 6.2. Consider a game with players in set rns and each player with actions
in set rms. Let σ “ pσ1, . . . , σnq be any well-supported multiple ε-approximate Nash
equilibrium with ε “ τ for the game. Then, for any j P rns, there exists a well-supported
multiple ε-approximate Nash equilibrium with ε “ τ ` δ in which the strategy of player
j is t-uniform for t “ 2 logp2fmnq

δ2 .

We now prove the main result of this section, Theorem 6.3. This result is stronger
than Theorem 5.17 for the general case (applied directly to the low rank case) due to
its logarithmic dependendence on m and f .

THEOREM 6.3. Let the strategy profile σ be a well-supported multiple ε-approximate
Nash equilibrium with ε “ τ for the given SGM. Then, there exists a t-uniform strategy
profile that is a well-supported multiple ε-approximate Nash equilibrium, with ε “ τ`δ

where t “ 2n2 logp2fmpn´1qq
δ2 .
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Table II. Statistics on number of pε, 2q equilibria found.

` ε #Eq. found #Eq. without LeT attacks
2 0 252 6
2 0.1 357 6
2 0.2 1696 9
2 0.3 13925 42

Thus, in Algorithm 3, if we set t “ 2n2 logp2fmpn´1qq
δ2 , we are sure to find a well-

supported multiple ε-approximate Nash equilibrium with ε “ τ ` δ given that at least
one well-supported multiple ε-approximate Nash equilibrium with ε “ τ exists. The
runtime is then Opmntq. Thus, the same algorithm works for both general and low
rank case, albeit with different performance guarantees.

7. POLICY ANALYSIS RESULTS
We developed the Policy Recommendation Engine based on Vector Equilibria (PREVE)
using the equilibrium concepts and algorithms described earlier. Using PREVE, we
were able to analyze the Lashkar-e-Taiba (LeT) application described in Section 2.

We first obtained payoff matrices from three experts in the politics of South Asia and
LeT in particular; to avoid bias, none had any background in game theory and none
had ethnic origins in the Indian subcontinent. Two were retired US State Department
employees with over 30 years of knowledge of negotiations in the region. The third was
the author of three well-known books on terrorism. The payoff matrices were created
completely independently using open source information as well as expertise of these
experts by following a set of instructions on what payoff values meant.

As described earlier, for notational convenience, we will refer to well-supported mul-
tiple ε-approximate Nash equilibria computed using only U 1 Ď U payoff functions as
pε, `q-equilibria, where |U 1| “ `. Such equilibria computed with the full set U are simply
written as ε-equilibria.

Before presenting the policy implications of the results generated by PREVE, we
present a summary of the pε, `q-equilibria we found in Table II. We limit the equilibria
presented to those where LeT does not attack. No such pε, 3q-equilibria were found for
ε ď 0.5, so we focus on the case when ` “ 2. In the case of mixed equilibria, we list an
equilibrium as having no LeT attacks when the probability of LeT attacking (action
attack) or holding its current set of attacks (action hold) is 25% or less.

We found no p0, 3q-equilibria where LeT did not perform violent actions, but we did
find the following:

(1) There were 20 p0, 2q-equilibria in which experts #1 and #3 agreed, 218 p0, 2q-
equilibria with experts #2 and #3 agreeing, and 14 p0, 2q-equilibria in which experts
#1 and #2 agreed.

(2) Of these 252 p0, 2q-equilibria, there were just six in which LeT did not carry out
attacks. There were no p0, 2q-equilibria involving experts #1 and #2 in which LeT
did not carry out attacks. Table III summarizes the actions present in these six
situations. An equilibrium named Eε,j,j1 is used to denote an pε, 2q equilibrium in
which the two experts who “agree” are j and j1.
In all six p0, 2q-equilibria listed above where LeT stands down, the US cuts aid
(development and military) to Pakistan, and India either carries out covert action
against LeT or engages in coercive diplomacy. Moreover, in most p0, 2q-equilibria,
the Pakistani military must crack down on LeT (though there is one case where
they may expand support) and additionally, the Pakistani government must mostly
prosecute LeT leaders (though there are two cases where they could do absolutely
nothing). When we look at experts #2 and #3, we see that there are only two p0, 2q-
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Table III. All pε, `q equilibria with ε “ 0, ` “ 2 in which LeT does
not attack.

Equil. LeT PakG PakM India US
E1

0,1,3 eaw pros crack covert cut

E2
0,1,3 eaw pros crack 0.75: covert cut

0.25: coerce
E3

0,1,3 eaw none crack coerce cut

E4
0,1,3 none pros support covert cut

E5
0,2,3 eaw pros crack coerce cut

E6
0,2,3 none none crack covert cut

Table IV. All pε, `q equilibria with ε “ 0.1, ` “ 2 which are not
p0, 2q-equilibria, and in which LeT does not attack.

Equil. LeT PakG PakM India US
E7

0.1,1,3 0.5: attack pros expand covert cut

0.5: none
E8

0.1,1,3 0.25: attack pros expand covert cut

0.75: none
E9

0.1,1,3 none pros expand covert cut

equilibria in which LeT does not attack—in one India takes covert action and the
US cuts aid. In both scenarios, the Pakistani military cracks down on LeT—in one
the Pakistani government prosecutes LeT personnel and does nothing in the other.
When we do the same with experts #1 and #3, we see that there are four p0, 2q-
equilibria in which LeT does not attack. In all four, India takes either covert action
or applies coercive diplomacy and the US cuts aid. In three cases, LeT eliminates
its armed wing, while in another it does nothing. In the other two, LeT has a 50%
(resp. 75%) chance of doing nothing and a 50% (resp. 25%) chance of attacking. In
three cases, the Pakistani government prosecutes LeT personnel and does nothing
in the fourth. In three of the cases, the Pakistani military cracks down on LeT, and
in the one remaining case, it actually expands support for LeT. What these results
may suggest is that India should expand covert action against LeT with the US
cutting financial aid to Pakistan at the same time if the goal is to reduce violence
by LeT.

(3) We also looked at p0.1, 2q-equilibria (i.e., where ε “ 0.1), which means that each
player may lose up to 10% of their best utility while being near an equilibrium with
2 of the 3 experts in agreement. In this case, we see no p0.1, 2q-equilibria involving
experts #1 and #2 where LeT does not attack. But with experts #1 and #3, and
experts #2 and #3, we do see such equilibria. As all p0, 2q-equilibria continue to be
p0.1, 2q-equilibria, we only show new p0.1, 2q-equilibria in Table IV.
With ε “ 0.1, we only get three new equilibria as compared to Table III. In all of
these, the US needs to cut aid to Pakistan and India needs to carry out covert action
against LeT. As in the previous table, this requires that the Pakistani government
prosecute LeT. Even with an expansion in Pakistani military support for LeT, this
provides hope that covert action on India’s part and cuts in US aid to Pakistan will
lead to reduced terrorist attacks by LeT.

We now consider pε, 2q-equilibria, for ε P t0.0, 0.1, 0.2u. Though we computed pε, 2q-
equilibria for ε “ t0.3, 0.4, 0.5, . . .u, all of these equilibria involve players giving up 30%
or more of their payoffs—something that we think is unlikely.

Of the 252 p0, 2q-equilibria, there were five equilibria in which the US cut aid, India
carried out either covert operations against LeT or coercive diplomacy against Pak-
istan, and the Pakistani military cracked down on LeT. In every one of these situations,
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LeT either eliminated its armed wing or did nothing, and the Pakistani government
either prosecuted LeT or did nothing. Moreover, there are 24 p0, 2q-equilibria in which
the US cuts aid and India carries out either covert action or coercive diplomacy—and
in 5 of these 24 equilibria, LeT either eliminated its armed wing or did nothing. How-
ever, the situation is more complex. In our data, we noticed that one expert’s payoffs
were significantly different from those of the other two. In fact, there were vastly more
equilibria between experts #2 and #3 than between experts #1 and #2 or between #1
and #3, suggesting expert #1 was a bit of an outlier. If we only consider experts #2
and #3, then the proportion of “good” equilibria where LeT stands down with the US
cutting aid to Pakistan and India either engages in covert action or coercive diplomacy
against Pakistan rises to 5 out of only 14. Of course, other inducements not considered
in this study can be used to get the Pakistani military to crack down on LeT.

We continued the same analysis of the 357 p0.1, 2q-equilibria. There were 23 equilib-
ria where the US cut aid and India took covert action. Of these, 6 equilibria led to LeT
either disbanding its armed wing or doing nothing—good outcomes for peace. If we ig-
nored expert #1 (who continued to be an outlier when we considered p0.1, 2q-equilibria),
the number of “good” equilibria remained the same, with fewer (20) overall equilibria.
Again, when the Pakistani military cracked down on LeT, there was a 100% chance of
LeT either eliminating its armed wing or getting rid of terrorism altogether.

When we look at the 1696 p0.2, 2q-equilibria, we see a similar pattern. We had a
total of 51 p0.2, 2q-equilibria, of which LeT cut attacks in 9. There were only 51 of
these p0.2, 2q-equilibria in which the US cut aid and India took either covert action
or engaged in coercive diplomacy. However, we note that when the Pakistani military
also cracks down on LeT (in addition to the US and Indian actions just described), the
majority (8 out of 9) of the remaining equilibria involve LeT eliminating its attacks.

The derivation of a policy when faced with multiple experts’ opinions that diverge
is a complex challenge. In the real world, policies are debated extensively by pol-
icy makers. Computer programs are unlikely to generate national security policies
automatically—we view the role of our paper and PREVE as providing valuable in-
put to such policy makers by identifying equilibria for all players across the multiple
games that result when a simultaneous game is being played. We suggest that players
choose to take actions that are common across most equilibria. For instance, in our
game involving Lashkar-e-Taiba, the US should definitely cut aid to Pakistan because
all the well-supported multiple approximate equilibria agree on this. Even though not
all equilibria agree on what India should do, they agree that India should either take
covert action or practice coercive diplomacy in all cases; hence, this is what we recom-
mend to policy makers. Additional challenges are raised by the presence of multiple
equilibria, defined below.
What to do with Multiple Equilibria. An important suggestion made by
Schelling [1960] when multiple equilibria exist is to act quickly in order to eliminate
undesirable equilibria. For example, when there are n equilibria and a player likes
only m of them (m ă n), then he can, in some cases, take unilateral action that ex-
cludes the other equilibria from being equilibria. For instance, in our LeT game, the
Indian government can explicitly state that under no circumstances would they enter-
tain a peace deal with Pakistan. By giving up this flexibility in a very vocal way—and
making it clear that they cannot back down on this by taking other action, otherwise
they would lose future elections—they eliminate all equilibria in which they propose
a peace deal. An interesting technical question that we do not address in the paper is
how a player can unilaterally act so that he eliminates equilibria that he deems less
preferable. Unilateral action is possible in the real world because there is always a
time gap—players do not play exactly at the same time, as the formalization in this
(and many game theory) papers requires.
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Limitations of our analysis. As with any application of a formal game-theoretic
model to a real-world situation, our framework and subsequent analysis are limited
in a variety of ways. One potential issue is that the actions listed above need not be
mutually exclusive in practice. For example, the United States could choose to conduct
covert operations against LeT in the same time period as cutting international aid to
Pakistan’s government (i.e., perform both actions covert and cut in unison). Our anal-
ysis assumes exclusivity over chosen actions (e.g., equilibrium E2

0,1,3 states that India
has a 75% probability of performing only covert and a 25% probability of performing
only coerce, and never both together). One way to address this is to include as new
actions all combinations of non-exclusive actions; for example, include a new action
covert+cut where the US performs both covert action against LeT and cuts support to
Pakistan’s government, but do not include a new action cut+expand under the assump-
tion that the US cannot both cut and expand aid to Pakistan’s government (i.e., cut
and expand are independent or mutually exclusive). This adds to the complexity of the
model, both in terms of the human expert-created payoff matrix creation and the ap-
proximate equilibrium computation. One could possibly address the former complexity
bump by adapting techniques from the budgeted preference elicitation (e.g., Boutilier,
Sandholm, and Shields [2004] in auctions, Nguyen et al. [2014] in Stackelberg games)
or active learning and matrix completion communities (e.g., Sutherland et al. [2013]),
and the latter complexity bump by parallelizing Algorithm 3 in the naı̈ve way at either
of the first two for loops.

Our choice of base solution concept—(approximate) Nash equilibrium—also war-
rants discussion of equilibrium selection, a well-known problem with many such con-
cepts. There can be and typically are multiple equilibria; indeed, as discussed in this
section, there were multiple favorable equilibria for our LeT problem, even when ε “ 0.
Each agent must then select an equilibrium to play, a decision that is not currently
included in our model (but has been addressed in different models in the game the-
ory literature through general concepts like the correlated equilibrium). Furthermore,
while our model assumes uncertainty over payoff matrices, it also makes some pos-
sibly unrealistic assumptions about symmetric information awareness across agents.
For example, we assume that all agents know they are playing the same game, which
may not be trivial in practice (e.g., the US may not know the full set of actions that LeT
or the Pakistani military can take). This additional uncertainty could lead to agents
adopting strategies that are not contained in any of the equilibria we compute. We
leave these problems as future research.

8. RELATED WORK
We group our survey of related work into three sections: first, the purely theoretical
aspects of computational game theory; second, the application of (computational and
traditional) game theory to counter-terrorism and modeling conflict; and third, dealing
with the purely social science study of Lashkar-e-Taiba.

8.1. Computational Game Theory
Games where each player has multiple payoffs have been studied before under
many names such as vector-valued games [Shapley 1959], multi-criteria games [Mal-
lozzi et al. 2008], games with multiple payoffs [Zeleny 1975], and multiple objective
games [Zhao 1991]. However, past work mainly focuses on multiple payoffs as a way
to model the situation where each player is trying to optimize many non-tradable
and non-monetizable criteria simultaneously. For such games, Pareto equilibria [Borm
et al. 1988] and its variants [Mallozzi et al. 2008] have been the solutions of choice.
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However, the situation we consider compares alternate realities subscribed to by each
expert. Hence, we are not interested in Pareto optimality.

As explained earlier, our motivation for this work is to analyze a simultaneous game
when experts disagree on payoffs for players. Different experts (with unknown ac-
curacy of prior knowledge) provide payoff functions for each player—and we expect
experts to differ on such payoff functions because of subjective judgment in such appli-
cations. Since our work requires computation of approximate Nash equilibria that are
common to all given payoffs, the problem is related to enumeration of Nash equilibria
in the multiplayer setting.

The computation of even a single Nash equilibrium for two-player games is a hard
problem [Chen and Deng 2006; Daskalakis et al. 2006a]. Enumeration of all Nash equi-
libria for a multiplayer game is likely to be an even harder problem [Avis et al. 2010].
There are also some hardness results known for computation of approximate Nash
equilibria. It has been proven that it is unlikely that an FPTAS exists for the problem
of finding Nash equilibria in a two-player game [Chen and Deng 2006]. Multiplicative
approximation of Nash equilibria is also PPAD-complete for a constant approximation
factor—even for two-player games [Daskalakis 2011].

Recently, there has been considerable progress in computation of approximate Nash
equilibria for two-player games. The best known approximation factor for a polynomial
time algorithm is 0.3393 [Tsaknakis and Spirakis 2007]. However, most recent work
focuses on computation of a single Nash equilibrium for two-player games.

Theobald [2009] studies enumeration of Nash equilibria for two-player games of
rank 1; however, that algorithm is not known to run in polynomial time. Lipton,
Markakis and Mehta [2003] give the first QPTAS for computation of Nash equilibria
in two-player and multiplayer games. However, the exponent depends on the inverse
square of the approximation factor and on the square of the number of players and
hence the algorithm is not feasible in practice. In fact, it has been proven by Feder,
Nazarzaded and Saberi [2007] that, as far as brute force search over uniform strategy
profiles is concerned, the runtime for these algorithms is tight. However, the above two
results do indicate that, in general, a uniform grid search over the strategy space is a
good heuristic for finding approximate Nash equilibria.

A particularly pertinent paper is that of Kalyanaraman and Umans [2007], which
defines constant rank multiplayer games and gives a PTAS for finding approximate
Nash equilibria for such games. We prove a structural theorem and also give a polyno-
mial time algorithm for computation of Nash equilibria and well-supported multiple
ε-approximate Nash equilibria for the rank 1 case. We also prove that when players
have a small number of strategies to choose from, an assumption which holds for many
real-world games, then a uniform strategy does well in the constant rank case.

We also note that our problem is different from simultaneous Bayesian games where
players themselves are uncertain of the payoffs. An alternative view of the problem
may be to model our problem as a Bayesian game where players are uncertain about
their payoffs. However, Bayesian games require knowledge about priors which are
hard to estimate for the real-world problems we are trying to model. In any case, we
study the situation where experts differ in their perception of payoffs and try to find the
approximate equilibria on which they all agree, and where we have no prior over the
accuracy of each expert. We do not try to model the case where players themselves are
uncertain of their payoffs. Our definitions of equilibria for multiple payoffs are related
to the definition of minimax-regret equilibrium given by Hyafil and Boutilier [2004].
While their work defines the equilibrium so as to minimize the maximum regret, we
seek to find all equilibria with a given bound for maximum regret.
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8.2. Game Theory and the Study of Conflict
Though there has been extensive work on the use of game theory for political analysis,
almost none of it involves large multiplayer games, and almost none of it involves
the use of formal computational methods. The use of game theory to study conflict
was pioneered by Schelling [1960], who developed a social scientist’s view of how two-
player conflicts—including terrorism—could be studied via game theory. Later, Bueno
de Mesquita [2010] recounts how he used two-person games to predict various actions
including one of interest in this project, namely that current US President Obama
would not be able to stop Pakistani-based terrorism. Both these and similar efforts
focus on two-player games; in contrast, the theory of equilibria in multiplayer games
with multiple payoff matrices was not described by either of them. Lastly, this paper
uses the LeT game proposed by Dickerson et al. [2011]. In contrast to this work, which
used only one payoff matrix corresponding to the views of a single expert, we use a
multiple payoff matrix model in this paper for which the relevant game theory and the
resulting implications for dealing with LeT had to be completely reconsidered.

Ozgul et al. [2007] have studied the problem of detecting terror cells in terror net-
works and proposed a variety of algorithms such as the GDM and OGDM methods.
Similarly, Lindelauf et al. [2009] have studied the structure of terrorist networks and
how they need to maintain sufficient connectivity in order to communicate while simul-
taneously maintaining sufficient disconnectivity in order to stay hidden. They model
this tension between communication and covertness via a game-theoretic model. This
same intuition led to the concept of covertness centrality [Ovelgönne et al. 2012] in
social networks where a statistical (rather than game-theoretic) method is used to
predict covert vertices in a network.

Sandler and Enders [2004] use the ITERATE data set of terrorist events to discuss
how economic methods including both game theory and time series analysis can be
used to propose policies for counter-terrorism. In an earlier survey [Enders and San-
dler 1995], the same authors specify how game theory might be used to model target
selection by terrorists. Major [2002] uses a mix of game theory, search, and statistical
methods to model terrorism risk. None of these works provide a formal game-theoretic
model involving both multiple players and multiple payoff matrices.

8.3. Research on and Analysis of Lashkar-e-Taiba
On the social science side, Clark [2010] was the first to study LeT from a military
perspective. He argues that LeT has grown beyond the control of Pakistan and the
Directorate for Inter-Services Intelligence (ISI), and that it will continue to grow with
help from fringe elements in the Pakistani military establishment. He argues that
India can only insulate itself from LeT-backed attacks by diminishing the internal
threat posed by the Indian Mujahideen, an Indian group closely affiliated with LeT.

Tankel [2011b] wrote a detailed analysis of LeT based on years of field work and
multiple visits to Pakistan to interview both LeT operatives as well as members of
Pakistan’s ISI. He provides a wonderful insight into LeT’s origins, ideology, and op-
erational structure, but does not include a policy analytics section specifically saying
how to deal with the menace posed by LeT. John’s excellent volume [John 2011] on
the same topic provides another in-depth study of LeT but does not propose policies on
how the US and/or India can collectively help reduce LeT attacks.

Virtually all past work on counter-terrorism policy is qualitative (see work by
Mannes [2013] for an overview). A group of experts gather around a table, hypoth-
esize about the impacts of different possible policies, and then decide which one to
use. It is only recently that quantitative methods for generating policies against terror
groups have started playing a role. Data mining approaches have been used to study
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the Pakistani terror group Lashkar-e-Taiba [Subrahmanian et al. 2012] with consider-
able impact in the strategic policy community in both the US and India, both of whom
have attended talks on the results. Subrahmanian et al. [2012] performs a data mining
study of LeT involving 770 variables that are analyzed via data mining algorithms to
learn the conditions under which LeT executes various types of attacks. It goes on to
consider the problem of shaping the behavior of LeT by using abductive inference mod-
els. A subsequent book carries out a similar analysis of the group Indian Mujahideen
(IM) [Subrahmanian et al. 2013]. Both books were followed by multiple talks and ar-
ticles in the press predicting attacks by LeT and/or IM, with most predictions being
accurate. Another excellent recent book on Pakistan in general by Bruce Riedel [2012],
a former top CIA official who advised the last five US presidents on relations with In-
dia and Pakistan, lays much of the blame for terrorism out of Pakistan (including LeT
terrorism) squarely at the doorstep of the Pakistani intelligence agency but does not
address LeT attacks in particular.

9. CONCLUSIONS
In this paper, we showed how to merge vector payoffs [Shapley 1959] and well-
supported ε-approximate equilibria [Daskalakis et al. 2006a; Daskalakis et al. 2006b]
so as to handle the problem of efficient computation of equilibria in multiplayer games
where multiple experts provide different payoff matrices, each capturing their own
perception of reality. We present efficient algorithms to find such equilibria—as well
as a QPTAS—and experimental results showing they work. The work is motivated by a
real-world game we have built to formulate policies against the terror group Lashkar-
e-Taiba (LeT) which carried out the 2008 Mumbai attacks. We then presented PREVE,
a set of algorithms based on multiplayer game theory that extends a game developed
earlier [Dickerson et al. 2011] to the case where there are multiple payoff matrices that
reflect differing opinions of different experts. As a consequence, the resulting equilibria
are much more robust to variations than the equilibria developed in [Dickerson et al.
2011] that are very sensitive to minor changes in the payoff matrix.

Pakistan is widely recognized as being one of the biggest threats to global security
today because of several factors: (i) its nuclear arsenal, (ii) the large milieu of violent
terrorist and extremist groups in the area with close ties to Pakistani intelligence,
(iii) tensions with India, and (iv) a collapsing economy. In this paper, we have focused
primarily on Pakistan-India relations, which India views primarily through the lens
of terrorist acts in India that are backed by the Pakistani military and are usually
operationally executed by LeT and/or its allies, like the Indian Mujahideen.

The PREVE theory, framework, and code have been developed in order to help policy-
makers with an interest in peace in South Asia determine the best ways for the parties
involved to move forward in order to reduce the threat of Lashkar-e-Taiba. Though we
applied PREVE only to LeT in this paper, the theory is general and can be applied to
any set of actors with any set of actions as long as one or more payoff matrices are
available. In this paper, area experts used open source data to create payoff matrices
for our five-player game.

PREVE may be improved in many ways. For instance, as noted by Nobel laureate
Tom Schelling and many others, it is well known that real-world conflicts are rarely
zero-sum games [Schelling 1960]. We have used certain zero-sum assumptions in this
paper in order to simplify an already very complex framework. However, many parts
of this paper do not require the zero-sum assumption and so it has been removed in
those parts. Nonetheless, there are interesting alternative models that could be used.
For instance, we could have players with uncertainty over the game they are playing,
and who play according to strategies that are robust across many possible games. In
this case, the players in question may not be actually playing any of the well-supported
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approximate equilibria in the true game. An improved treatment to handle this case
needs to be developed.

From a public policy perspective, the results of this paper may support three ideas.

(1) The US must cut aid to Pakistan. There are no equilibria where LeT behaves well
where the US is providing aid to Pakistan. However, we do not have a recommen-
dation for exactly how much this cut should be—only that cuts need to be made.

(2) India must engage in additional covert action against LeT and its allies and/or
coercive diplomacy towards Pakistan. By cutting aid, the US would intuitively in-
crease political and economic pressure on the Pakistani establishment, leading to
a potential loss of support for the Pakistani military leadership amongst the Pak-
istani people. By engaging in covert action, India would put operational constraints
on LeT, making attacks harder by “taking the fight to them” as the US has done
against Al-Qaeda. By taking steps towards coercive diplomacy, India would concur-
rently increase pressure on the Pakistani government and military, complementing
the US aid cuts proposed.

(3) The key policy element is getting the Pakistani military to crack down on LeT, in
conjunction with US cuts on aid to Pakistan and covert action/coercive diplomacy
by India. The key question is how to induce the Pakistani military to crack down
on LeT. An examination of the deep social, political, economic, and jihadist links
that the Pakistani military has could lead to better understanding of the pressures
that might induce them to crack down on extremist elements, many of whom they
currently support.

PREVE is a codebase, not an operational system. Top politicians and policymakers
are busy and are often more interested in white papers addressing their problem than
learning how to use software systems. In our case, PREVE has been used to generate
these results and then generate a report interpreting the results for policymakers. The
results of this study have been disclosed to top government officials in both the US and
Indian government. There is significant interest in continuing these studies.
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A. ADDITIONAL EXPERIMENTS
In this section, we present experimental results for Algorithm 3 on simulated data.
First, we present results showing the algorithm’s running time and output on gener-
ated games. Second, we explore the relationship between various traits of the game
and the percentage of strategies that are equilibria. The framework was implemented
in about 700 lines of C++, and the experiments were run on a 4-CPU, 4-core Intel Xeon
3.4GHz machine with 64GB of RAM running Ubuntu 12.04.

To test the scaling properties of Algorithm 3, we built a game generator and varied
the number of experts (each giving one set of payoff matrices), players, and actions per
player. We also varied the granularity factor t when generating t-uniform strategies.

Figure 1 shows the runtime of Algorithm 3 on generated data as both the num-
ber of players and number of actions increase, for varying granularity factors. As ex-
pected, increasing the number of players (while holding the number of actions con-
stant) hurts runtime significantly more than increasing the number of actions (while
holding the number of players constant). Similarly, increasing the granularity factor t
(shown on the x-axis) exponentially increases the number of possible strategy profiles
over which the algorithm must iterate, resulting in large runtime increases. Future
research would increase the algorithm’s equilibrium-generation capabilities to games
with many players and many actions.

Figure 2 quantifies the relationship between the ε-approximation threshold and the
percentage of strategy profiles that are well-supported multiple ε-approximate Nash
equilibria. Intuitively, increasing the slack in the approximation factor ε yields a higher

c© 2014 ACM 2157-6904/2014/09-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

1 2 3 4 5
k

10-3

10-2

10-1

100

101

102

103

Ru
nt

im
e 

(s
)

Runtime vs. Number of Players and k
|Players|=2
|Players|=3
|Players|=4

1 2 3 4 5
k

10-4

10-3

10-2

10-1

100

Ru
nt

im
e 

(s
)

Runtime vs. Number of Actions and k
|Actions|=2
|Actions|=3
|Actions|=4

Fig. 1. Runtime as the number of players increases (left) and number of actions increases (right) for t-
uniform factor t P t1, . . . , 5u.
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Fig. 2. Percentage of all sets of strategy profiles that are well-supported multiple ε-approximate Nash
equilibria as the number of experts increases (left) and t-uniform factor increases (right), for ε P

t0.0, 0.05, . . . , 1.0u.

percentage of strategy profiles being equilibria, while increasing the number of poten-
tial payoff matrices decreases this percentage of strategy profiles. The rate of increase
of this line is highly dependent on the distribution of payoffs to each individual player.
With random generation of payoffs, the increase is fairly steady; however, a more struc-
tured (e.g., real-world) payoff function would affect this trend. In Section 7, we consid-
ered such a real-world game.

B. PROOFS
In this section, we provide complete proofs for various theorems and lemmas in the
main paper.

B.1. Proofs for Section 5.1
B.1.1. Lemma 5.2

PROOF. Let pσ1, σ2q be a feasible solution to the given LP. Let p “
ř

iPrms

ř

jPrms σ
1
i σ

2
jupei, ejq be the payoff for player 1. The payoff for player 2 will be

´p. Then, we have:

p “
ÿ

iPrms

ÿ

jPrms

σ1
i σ

2
jupei, ejq “

ÿ

iPrms

σ1
i

ÿ

jPrms

σ2
jupei, ejq

ď
ÿ

iPrms

σ1
i pr ` εq pfrom p6qq

“ r ` ε 7
ÿ

iPrms

σ1
i “ 1 (12)

Similarly,

p “
ÿ

jPrms

σ2
j

ÿ

iPrms

σ1
i upei, ejq ě

ÿ

jPrms

σ2
j pr ´ εq pfrom p5qq

“r ´ ε 7
ÿ

jPrms

σ2
j “ 1 (13)

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1, Publication date: September 2014.



Automated Generation of Counter-Terrorism Policies App–3

From (12) and (5):

ÿ

iPrms

σ1
i p´upei, ejqq ď ´p` 2ε,@j P rms (14)

Similarly, from (13) and (6):

ÿ

jPrms

σ2
jupei, ejq ď p` 2ε,@i P rms (15)

Since p and ´p are payoffs for given strategies and u and ´u are the payoff functions
for players 1 and 2 respectively, the claim follows from (14), (15) and the definition of
approximate Nash Equilibrium (Definition 3.4).

B.1.2. Lemma 5.3

PROOF. Let p “
ř

iPrms

ř

jPrms σ
1
i σ

2
jupei, ejq be the payoff for player 1. Because its a

zero-sum game, the payoff for player 2 will be ´p. Then, from Definition 3.4 of approx-
imate Nash Equilibrium:

ÿ

iPrms

σ1
i p´upei, ejqq ď ´ p` ε,@j P rms

ùñ
ÿ

iPrms

σ1
i upei, ejq ěp´ ε,@j P rms pmultiplying by -1q

ùñ
ÿ

iPrms

σ1
i upei, ejq ěr ´ τ,@j P rms 7 p ě r ´ ε, 2ε ď τ (16)

Similarly,
ÿ

jPrms

σ2
jupei, ejq ďp` ε,@i P rms

ùñ
ÿ

jPrms

σ2
jupei, ejq ďr ` τ,@i P rms 7 p ě r ´ ε, 2ε ď τ (17)

The other constraints in the LP are satisfied by any valid strategy profile. Thus, the
claim follows from (16), (17) and the fact that pσ1, σ2q is a strategy profile.

B.1.3. Lemma 5.4

PROOF. Any feasible solution to LP MEAEpU,P, ε2 q is a feasible solution to
LP EAEpui, ri,

ε
2 q,@i P rf s because constraints for LP MEAEpU,P, ε2 q are a super-

set of constraints for LP EAEpui, ri,
ε
2 q,@i P rf s. Thus, from Lemma 5.2, the feasible

solution is a strategy profile that is an ε-approximate Nash equilibrium for all con-
stituent games of the ZSGM. The result then follows from Definition 4.2 of multiple
ε-approximate Nash equilibrium.

B.1.4. Lemma 5.5

PROOF. From Lemma 5.3, any ε-approximate Nash equilibrium for zero-sum game
with payoff matrix ui such that payoff for player 1 is between ri ´ ε and ri `
ε,@i P rf s satisfies all constraints of LP EAEpui, ri, 2εq. Thus, the given equilib-
rium is feasible for LP EAEpui, ri, 2εq,@i P rf s. Hence the given equilibrium satisfies
LP MEAEpU,P, 2εq.
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B.1.5. Theorem 5.6

PROOF. All LPs in the returned set are of the form
LP MEAEpU,P, 1e q. From Lemma 5.5, all strategy profiles that are feasible for these
LPs are multiple ε-approximate Nash equilibrium with ε “ 2

e and hence the first condi-
tion is satisfied. From Lemma 5.4, all feasible solutions are ε-approximate Nash equi-
libria with ε “ 1

2e for the given game and hence the second condition is satisfied. For
computing the runtime of the algorithm, we observe that the for loop in the algorithm
runs pe` 1qf times and each time it outputs an LP of size 2mf ` 2m` 2 which can be
appended to a data structure such as a list in constant time. Thus, the algorithm can
be implemented in time Oppe` 1qf p2mf ` 2m` 2qq.

B.2. Proofs for Section 5.2
B.2.1. Lemma 5.9. For arbitrary real numbers, we have, by matching coefficients on

LHS and RHS,
ÿ

aPA

ź

iPrns

xiai ”
ź

iPrns

ÿ

lPrms

xil (18)

From (9), by combining the two product terms into one, we get: ujpσq “
ř

aPA

ś

iPrns σ
i
aiα

i,j
ai . From (18), with xiai “ σiaiα

i,j
ai , we get

ujpσq “
ź

iPrns

ÿ

lPrms

σilα
i,j
l (19)

This function is not a function of j’s strategy. When player j’s strategy is pure and its
support is just an action, say l P rms, substituting value of σj as el in (19), we have:

ujpel, σ´jq “ αj,jl

ź

iPrnsztju

ÿ

lPrms

σilα
i,j
l “ αj,jl u1´jpσq (20)

A necessary and sufficient condition for Nash equilibrium is that only the best pure
responses can be in support of each player’s strategy Let σ “ pσ1, σ2, .., σnq be a Nash
equilibrium for the above game. Let E be the set of all Nash equilibria for the given
game. Therefore, for any player, j, with a positive payoff and any action a in support of
σj , we have:

σ P E ðñ ujpea, σ´aq ě ujpel, σ´aq,@l P rms (21)

ðñ αj,j
a u1´jpσq ě αj,j

l u1´jpσq (Substituting from (20)) (22)

Assuming that u1´j ą 0 (otherwise, j can play any action without affecting his payoff,
which remains 0), we have:

p22q ðñ αj,j
a ě αj,j

l ðñ a P Sj (From defn. of Sj) (23)

Since the above is true @a P supportpσjq and @j P rns, the claim follows.

B.2.2. Lemma 5.10

PROOF. A necessary and sufficient condition for well-supported relative ε-
approximate Nash equilibrium is that only the approximate pure best responses can
be in support of each player’s strategy. Let W be the set of all well-supported relative
ε-approximate Nash equilibria (with non-zero payoffs for each player) for the given
game. Therefore, for any player, j, with a positive payoff and any strategy i in support
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of σj , we have:

σ PW ðñ ujpi, σ´iq ě p1´ εqulpl, σ´iq,@l P rms

ðñ αj,ji u1jpσq ě p1´ εqα
j,j
l u1jpσq,@l P rms

ðñ αj,ji ě p1´ εqαj,jl ,@l P rms

αj,ji ě p1´ εqpmaxαj,jq

Thus, equation (10) above is the complete characterization of well-supported relative
ε-approximate Nash equilibria for the given game.

B.2.3. Theorem 5.11

PROOF. Let σ be a strategy profile for the given game for which equation (11)
holds. From the definition of well-supported multiple relative ε-approximate Nash
equilibrium (Definition 4.4), a strategy profile is well-supported multiple relative ε-
approximate Nash equilibrium iff it is a well-supported ε-approximate Nash equilibri-
umfor each constituent game of the SGM. Since equation (11) holds for σ for all con-
stituent games, from Lemma 5.10, σ is well-supported multiple relative ε-approximate
Nash equilibrium for the given game. Thus, from Lemma 5.10, σ satisfies equation (10)
for all constituent games. Thus, σ satisfies equation (11).

B.3. Proofs for Section 5.3
B.3.1. Lemma 5.16

PROOF. From definition of well-supported ε-approximate Nash equilibrium, for any
action a P Supportpσjq:

ujpea, σ´jq ě ujpel, σ´jq ´ ε,@l P rms (24)

Now, we construct a t-uniform strategy profile, σ1, from σ as follows. Let σ1i “
rσits
t . The

above rounding procedure can make ||σ1||1 greater than 1. To counter this, select any
element in σ1 arbitrarily (without replacement) and round it down to tσitu

t . Repeat this
until ||σ1||1 ‰ 1. The above procedure is guaranteed to give a t-uniform strategy profile
σ1 such that:

|σ1i ´ σi| ď
1

t
(25)

From the definition of multiplayer games of low rank, the payoff is given by:

ujpσq “
K
ÿ

k“1

ź

iPrns

ÿ

lPrms

σilα
i,j,k
l (26)

From above, when player j plays action a with probability 1 and the rest of the players
play their respective strategies in σ, we have:

ujpea, σ´jq “
K
ÿ

k“1

αj,j,ka

ź

iPrnsztju

ÿ

lPrms

σilα
i,j,k
l (27)
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Thus, we have:

|ujpea, σ´jq ´ ujpea, σ
1
´jq| “|

K
ÿ

k“1

αj,j,ka

ź

iPrnsztju

ÿ

lPrms

σilα
i,j,k
l

´

K
ÿ

k“1

αj,j,ka

ź

iPrnsztju

ÿ

lPrms

σ1
i
lα
i,j,k
l |

By taking the outermost summation and the common factor αj,j,ka out, we get:

|ujpea, σ´jq ´ ujpea, σ
1
´jq|

“|

K
ÿ

k“1

αj,j,ka p
ź

iPrnsztju

ÿ

lPrms

σilα
i,j,k
l ´

ź

iPrnsztju

ÿ

lPrms

σ
1i
l α

i,j,k
l q|

“|

K
ÿ

k“1

αj,j,ka p
ź

iPrnsztju

xi,k ´
ź

iPrnsztju

x1i,kq| (28)

Where, xi,k “
ř

lPrms σ
i
lα
i,j,k
l “ pαi,j,kqTσ and

x1i,k “
ř

lPrms σ
1i
lα
i,j,k
l “ pαi,j,kqTσ1. From Lemma 5.14 and Equation 25, we have |xi,k ´

x1i,k| ď
m
t . From Lemma 5.15 and the above, we have:

|
ź

iPrnsztju

xi,k ´
ź

iPrnsztju

x1i,k| ď
pn´ 1qm

t

From above and Equation 28, we have:

|ujpea, σ´jq ´ ujpea, σ
1
´jq| ď |

K
ÿ

k“1

αj,j,ka

pn´ 1qm

t
|

ď
pn´ 1qmk

t
7 αj,j,ka ď 1 (29)

From above and Equation 24, we have, for every action a in support of σ1:

ujpea, σ
1
´jq ě ujpel, σ

1
´jq ´

2pn´ 1qmk

t
´ ε,@l P rms

Thus, from the definition, σ1 is a well-supported ε ` 2pn´1qmk
t -approximate Nash equi-

librium.

B.3.2. Theorem 5.17

PROOF. From Lemma 5.16, given a well-supported τ -approximate Nash equilib-
rium strategy profile, we can always construct a t-uniform strategy profile that is
a well-supported τ ` pn´1qmk

t -approximate Nash equilibrium. From the definition of
well-supported multiple ε-approximate Nash equilibrium, σ is a well-supported τ -
approximate Nash equilibrium strategy profile for each of the constituent games. The
construction of σ1 from σ, as described in the proof of Lemma 5.16, is independent of
payoff functions for constituent games and hence the lemma applies simultaneously
to all the constituent games of the SGM. Hence σ1 is a well-supported τ ` pn´1qmk

t -
approximate Nash equilibrium for all the constituent games of the SGM. Thus, from
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the definition of well-supported multiple ε-approximate Nash equilibrium, σ1 is a well-
supported multiple ε-approximate Nash equilibrium with ε “ τ` pn´1qmk

t and the claim
follows.

B.4. Proofs for Section 6.2
B.4.1. Lemma 6.2

PROOF. Let σ “ pσ1, . . . , σnq be a Nash equilibrium. Construct a multiset M j by
sampling independently at random from the set of actions according to distribution σj .
Construct strategy ρj by assigning probability of l

t to an action that appears l times
in Mj and ρ´j “ σ´j . We prove that ρ is an τ ` δ-well supported multiple payoff
approximate Nash equilibrium w.p.p.

Let M j
s P rms be a random variable that denotes the sth element of M j . Let Ys “

uilpeMj
s
, ek, σ

´j,lq be a random variable that is equal to payoff for player l, when player
l plays action k and player j plays action M j

s in constituent game i. Let µ be the mean
of random variables tY1, . . . , Ytu. Then, we have:

µ “
t

ÿ

s“1

uilpeMj
s
, ek, σ

´j,lq

t

“

t
ÿ

s“1

uilpeMj
s
, ek, ρ

´j,lq

t
pfrom pρ´j “ σ´jqq

“uilp
t

ÿ

s“1

eMj
s

t
, ek, ρ

´j,lq pfrom pdefinition of uilqq

“uilpek, ρ
´lq

Where, the last equality follows from the fact that if an action occurs l times in M j , it
gets a weight of l

t is ρj . Also, from construction of ρ, it follows that Epρjkq “ σjk. From
linearity of expectation it follows that Epuilpek, ρ

´lqq “ uilpek, σ
´lq. Thus, @i P rf s, l P

rns ´ tju, k P rms, uilpek, ρ
´lq is the mean of t i.i.d. random variables, each with expec-

tation uilpek, σ
´lq. Payoffs are in r0, 1s and the same bound applies to all these random

variables. Also, since only player j’s strategy is changed, uijpek, σ´jq “ uijpek, ρ
´jq.

Let Api, k, lq be the event |uilpek, ρ
´lq´uilpek, σ

´lq| ě δ
2 . From Hoeffding inequality, we

have:

PrrApi, k, lqs ď 2 exp p
´tδ2

2
q

Let A “
Ť

iPrfs,kPrms,lPrns´tjuApi, k, lq. From union bound:

PrrAs ď 2fmpn´ 1q exp p
´tδ2

2
q

Thus, 2fmn exp p´tδ
2

2 q “ 1 ùñ PrrAcs ą 0. Therefore, t “ 2 logp2fmnq
δ2 ensures that Dρ

for which event Ac occurs. Let π be the strategy profile for which this happens. From
definition ofAc and well-supported multiple ε-approximate Nash equilibrium, we have,
@i P rf s,@k P rms,@l P rns:

uilpek, σ
´lq ď uilpeh, σ

´lq ` τ pfrom pDefinition 4.3qq

ùñ uilpek, π
´lq ď uilpeh, π

´lq ` τ ` δ pfrom pdefinition of Acqq
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Thus π is well-supported multiple ε-approximate Nash equilibrium with ε “ τ ` δ.

B.4.2. Theorem 6.3

PROOF. Let t “ 2n2 logp2fmpn´1qq
δ2 . Then by application of Lemma 6.2 for player 1, we

get a well-supported multiple ε-approximate Nash equilibrium with ε “ τ ` δ
n with t-

uniform strategy of player 1. To the resulting strategy profile, we can apply Lemma 6.2
to the strategy for player 2 and get a strategy profile that is a well-supported multiple
ε-approximate Nash equilibrium with ε “ τ ` 2δ

n with t-uniform strategy of players 1
and 2. We can do this successively for all players and get a t-uniform strategy profile
which is a well-supported multiple ε-approximate Nash equilibrium with ε “ τ ` δ

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1, Publication date: September 2014.


