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Adversarial Geospatial Abduction Problems
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Geospatial Abduction Problems (GAPs) involve the inference of a set of locations that “best explain” a given
set of locations of observations. For example, the observations might include locations where a serial killer
committed murders or where insurgents carried out Improvised Explosive Device (IED) attacks. In both
these cases, we would like to infer a set of locations that explain the observations, for example, the set of lo-
cations where the serial killer lives/works, and the set of locations where insurgents locate weapons caches.
However, unlike all past work on abduction, there is a strong adversarial component to this; an adversary
actively attempts to prevent us from discovering such locations. We formalize such abduction problems as
a two-player game where both players (an “agent” and an “adversary”) use a probabilistic model of their
opponent (i.e., a mixed strategy). There is asymmetry as the adversary can choose both the locations of the
observations and the locations of the explanation, while the agent (i.e., us) tries to discover these. In this ar-
ticle, we study the problem from the point of view of both players. We define reward functions axiomatically
to capture the similarity between two sets of explanations (one corresponding to the locations chosen by the
adversary, one guessed by the agent). Many different reward functions can satisfy our axioms. We then for-
malize the Optimal Adversary Strategy (OAS) problem and the Maximal Counter-Adversary strategy (MCA)
and show that both are NP-hard, that their associated counting complexity problems are #P-hard, and that
MCA has no fully polynomial approximation scheme unless P=NP. We show that approximation guarantees
are possible for MCA when the reward function satisfies two simple properties (zero-starting and mono-
tonicity) which many natural reward functions satisfy. We develop a mixed integer linear programming
algorithm to solve OAS and two algorithms to (approximately) compute MCA; the algorithms yield different
approximation guarantees and one algorithm assumes a monotonic reward function. Our experiments use
real data about IED attacks over a 21-month period in Baghdad. We are able to show that both the MCA
algorithms work well in practice; while MCA-GREEDY-MONO is both highly accurate and slightly faster
than MCA-LS, MCA-LS (to our surprise) always completely and correctly maximized the expected benefit to
the agent while running in an acceptable time period.
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1. INTRODUCTION

Geospatial Abduction Problems (GAPs) were introduced by Shakarian et al. [2010] to
find a set of locations that “best explain” a given set of locations of observations. We
call these inferred sets of locations “explanations.” There are many such applications
in a wide variety of domains.

— In criminology, serial killers carry out murders at various locations; these corre-
spond to the observations we make. The goal of the police is to identify a set of
locations that best “explain” the observations. Thus, the police look for the killer’s
home and office locations. The killer, of course, goes to considerable effort usually to
ensure that he cannot be easily found by the police.

— In military applications, insurgents (such as those in Iraq and Afghanistan) carry
out Improvised Explosive Device (IED) attacks at various locations; these corre-
sponding to our observations. Multinational forces operating in these countries
would like to identify many locations associated with these attack locations; one
such class of locations corresponds to the locations of weapons caches that provide
logistics support for the attacks and enable the attackers to carry them out. As in
the case of the serial killer, the insurgents reason carefully about their choice of
weapons cache locations to minimize the probability of being detected.

— In a wildlife application, a rare animal or bird might be spotted at several locations
(observations). We would like to infer the location of the creature’s nest or den.
Many animals take considerable care to keep their den/nest hidden as these often
hold young ones or eggs and, in some cases, food.

Shakarian et al. [2010] defined Geospatial Abduction Problems (GAPs) and studied
a version of the problem where the adversary (the “bad guy” or the entity that wishes
to evade detection) does not reason about the agent (the “good guy” or the entity that
wants to detect the adversary). Despite this significant omission, they were able to ac-
curately predict the locations of weapons caches in real-world data about IED attacks
in Baghdad. In this article, we introduce adversarial geospatial abduction problems
where both the agent and the adversary reason about each other. Specifically, our
contributions are as follows.

(1) We axiomatically define reward functions to be any functions that satisfy certain
basic axioms about the similarity between an explanation chosen by the adversary
(e.g., where the serial killer lives and works or where the insurgents put their IED
caches) and define notions of expected detriment (to the adversary) and expected
benefit (to the agent).

(2) We formally define the Optimal Adversary Strategy (OAS) that minimizes chances
of detection of the adversary’s chosen explanation and the Maximal Counter-
Adversary strategy (MCA) that maximizes the probability that the agent will detect
the adversary’s chosen explanation.

(3) We provide a detailed set of results on the computational complexity of these prob-
lems, the counting complexity of these problems, and the possibility of approxima-
tion algorithms with approximation guarantees for both OAS and MCA.

(4) We develop Mixed Integer Linear Programming algorithms (MILPs) for OAS and
two algorithms, MCA-LS and MCA-GREEDY-MONO, to solve MCA with certain

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 2, Article 34, Publication date: February 2012.



Adversarial Geospatial Abduction Problems 34:3

approximation guarantees. MCA-LS has no assumptions, while MCA-GREEDY-
MONO assumes monotonicity.

(5) We develop a prototype of our MILP algorithms to solve the OAS problem, using
our techniques for variable reduction on top of an integer linear program solver.
We demonstrate the ability to achieve near-optimal solutions as well as a correct
reduction of variables by 99.6% using a real-world dataset.

(6) We develop a prototype implementation that shows that both MCA-LS and MCA-
GREEDY-MONO are highly accurate and have very reasonable time frames.
Though MCA-GREEDY-MONO is slightly faster than MCA-LS, we found that on
every single run, MCA-LS found the exact optimal benefit even though its theoret-
ical lower-bound approximation ratio is only 1/3. As MCA-LS does not require any
additional assumptions and as its running time is only slightly slower than that of
MCA-GREEDY-MONO, we believe this algorithm has a slight advantage.

The organization of the article is as follows. Section 2 first reviews the GAP
framework of Shakarian et al. [2010]. Section 3 extends GAPs to the adversarial
case using an axiomatically-defined reward function (Section 2). Section 4 presents
complexity results and several exact algorithms using MILPs for the OAS problem.
Section 5 provides complexity results and develops exact and approximate methods
MCA, including an approximation technique that provides the best possible guarantee
unless P = NP. We then briefly describe our prototype implementation and describe a
detailed experimental analysis of our algorithms. Finally, related work is described in
Section 7.

2. OVERVIEW OF GAPS

In this section, we briefly describe the theory of GAPs introduced by Shakarian
et al. [2010]. With the exception of the counting complexity results (Lemma 2.1 and
Theorem 2.1), everything in Section 2 appeared in Shakarian et al. [2010]. Through-
out this article, we assume the existence of integers M, N > 0 that jointly define a
2-dimensional gridded space. We use N,R,R+ to respectively denote the sets of natu-
ral numbers, all real numbers, and nonnegative reals.

Definition 2.1 (Space). Suppose M, N ∈ N. The space S is the set {1, . . . , M} ×
{1, . . . , N}.
Throughout this article, we assume that M, N,S are arbitrary, but fixed. This repre-
sentation of the space S as a set of integer coordinates is common in most Geospatial
Information Systems (GIS). We use 2S to denote the power set of S. We assume that S
has an associated distance function d which assigns a nonnegative distance to any two
points and satisfies the usual distance axioms.1

Definition 2.2 (Observation Set). An observation set O is any finite subset of S.

For instance, in our IED application, an observation set is simply the set of locations
where attacks occurred. In the serial killer example, the observation set is the set of
locations where the killings occurred.

Definition 2.3 (Feasibility Predicate). A feasibility predicate is any function feas :
S → {TRUE, FALSE}.
Feasibility predicates encode domain knowledge. For instance, a feasibility predicate
in the IED application might rule out the caches being on U.S. bases or in bodies of

1d(x, y) ≥ 0; d(x, x) = 0; d(x, y) = d(y, x); d(x, y) + d(y, z) ≥ d(x, z).
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water or (in the case of Baghdad where our dataset contains Shiite attacks) Sunni
neighborhoods. Throughout this article, we assume an arbitrary, but fixed function
feas that assigns either true or false to every point in S. In our complexity results, we
assume feas is computable in constant time.

Definition 2.4 ((α, β)-explanation). Given a finite set of observations O and real
numbers α ≥ 0, β > 0, a finite set of points E ⊆ S is an (α, β)-explanation of O iff:

(1) (∀p ∈ E) feas(p) = TRUE;
(2) (∀o ∈ O)(∃p ∈ E) α ≤ d(p, o) ≤ β.

Intuitively, E is an (α, β)-explanation of O if every point in E is feasible and every ob-
servation in O is neither too close nor too far from a point in E . For a given observation,
o, we will refer to point p as a partner iff feas(p) and d(o, p) ∈ [α, β].

α and β are parameters that can be easily learned from historical data (as was done
in Shakarian et al. [2010]). Both criminologists Rossmo and Rombouts [2008] and
military experts U.S. Army [1994] have noted that partner locations are not too close
to an observation location nor are they too far.2 Note that having α, β actually increases
the generality of our approach as users can always opt not to use them by setting α = 0
and β to any number exceeding

√
M2 + N2. Given an integer k > 0, a k-explanation is

an (α, β)-explanation of cardinality k or less. Often we will fix k; in this situation we
will use the terms “k-explanation” and “explanation” interchangeably. Alternatively,
another requirement that can be imposed on an explanation is irredundancy.

Definition 2.5. An explanation E is irredundant iff no strict subset of E is an
explanation.

Intuitively, if we can remove any element from an explanation, and this action causes
it to cease to be a valid explanation, we say the explanation is irredundant.

Example 2.1. Figure 1 shows a map of a drug plantation depicted in a 18 ×
14 grid. The distance between grid squares is 100 meters. Observation set O =
{o1, o2, o3, o4, o5} represents the center of mass of the poppy fields. Based on an in-
formant or from historical data, drug enforcement officials know that there is a drug
laboratory located 150−320 meters from the center mass of each field (i.e., in a geospa-
tial abduction problem, we can set [α, β] = [150, 320]). Further, based on the terrain,
the drug enforcement officials are able to discount certain areas (shown in black on
Figure 1, a feasibility predicate can easily be set up accordingly). Based on Figure 1,
the set {p40, p46} is an explanation. The sets {p42, p45, p48} and {p40, p45} are also ex-
planations.

We now formally recall the definition of a GAP from Shakarian et al. [2010].

The k Spatial (α, β) Explanation Problem (k-SEP).
INPUT: Space S, a set O of observations, a feasibility predicate feas, reals numbers
α ≥ 0, β > 0, and natural number k.
OUTPUT: “Yes” if there exists an (α, β) explanation for O of size k, “no” otherwise.

Shakarian et al. [2010] shows this problem to be NP-complete based on a reduction
from the known NP-complete problem Geometric Covering by Discs (GCD) seen in

2In the case of IED attacks, this is because the location around an IED attack is usually cordoned off and
searched and the insurgents do not want their weapons caches to be found, thus leading to α. In contrast, the
insurgents do not want their caches to be too far away as they then run the risk of detection at checkpoints
and random search points while transporting munitions, leading to β.
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Fig. 1. Map of poppy fields for Example 2.1. For each labeled point pi, the “p” is omitted for readability.

Johnson [1982], also known as the Euclidean m-center on points in Masuyama and
Ibaraki [1981]. The problem is defined as follows.

Geometric Covering by Discs (GCD).
INPUT: A set P of integer-coordinate points in a Euclidean plane, positive integers
b > 0 and K < |P|.
OUTPUT: “Yes” if there exists k discs of diameter b centered on points in P such that
there is a disc covering each point in P, “no” otherwise.

As with most decision problems, we define the associated counting problem, #GCD,
as the number of “yes” answers to the GCD decision problem. The result that follows,
which is new, shows that #GCD is #P-complete and, moreover, that there is no fully
polynomial random approximation scheme for #GCD unless NP equals the complexity
class RP.3

LEMMA 2.1. #GCD is #P-complete and has no FPRAS unless NP=RP.

We can leverage the preceding result to derive a complexity result for the counting
version of k-SEP.

THEOREM 2.1. The counting version of k-SEP is #P-complete and has no FPRAS
unless NP=RP.

3. GEOSPATIAL ABDUCTION AS A TWO-PLAYER GAME

Throughout this article, we view geospatial abduction as a two-player game where
an agent attempts to find an “explanation” for a set of observations caused by the
adversary who wants to hide the explanation from the agent.

Each agent chooses a strategy which is merely a subset of S. Though “strategy” and
“observation” are defined identically, we use separate terms to indicate our intended
use. In the IED example, the adversary’s strategy is a set of points where to place his

3 RP is the class of decision problems for which there is a randomized polynomial algorithm that, for any
instance of the problem, returns “false” with probability 1 when the correct answer to the problem instance
is false, and returns “true” with probability (1 − ε) for a small ε > 0 when the correct answer to the problem
instance is “true.”
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cache, while the agent’s strategy is a set of points that he thinks hold the weapons
caches. Throughout this article, we use A (respectively B) to denote the strategy of the
adversary (respectively agent).

Given a pair (A,B) of adversary-agent strategies, a reward function measures how
similar the two sets are. The more similar, the better it is for the agent. As reward
functions can be defined in many ways, we choose an axiomatic approach so that our
framework applies to many different reward functions including ones that people may
invent in the future.

Definition 3.1 (Reward Function). A reward function is any function rf : 2S × 2S →
[0, 1] that for any k-explanation A 
≡ ∅ and set B ⊆ S, the function satisfies:

(1) If B = A, then rf(A,B) = 1.
(2) For B,B′ then

rf(A,B ∪ B′) ≤ rf(A,B) + rf(A,B′) − rf(A,B ∩ B′).

We now define the payoffs for the agent and adversary.

OBSERVATION 3.1. Given adversary strategy A, agent strategy B, and reward func-
tion rf, the payoff for the agent is rf(A,B) and the payoff for the adversary is −rf(A,B).

It is easy to see that for any reward function and pair (A,B), the corresponding game is
a zero-sum game [Leyton-Brown and Shoham 2008]. Our complexity analysis assumes
all reward functions are polynomially computable. All the specific reward functions we
propose in this article satisfy this condition.

The basic intuition behind the reward function is that the more the strategy of the
agent resembles that of the adversary, the closer the reward is to 1. Axiom 1 says that
if the agent’s strategy is the same set as adversary’s, then the reward is 1. Axiom 2
says that adding a point to B cannot increase the reward to the agent if that point is
already in B, that is, double-counting of rewards is forbidden.

The following theorem tells us that every reward function is submodular, that is,
the marginal benefit of adding additional points to the agent’s strategy decreases as
the cardinality of the strategy increases.

PROPOSITION 3.1 (SUBMODULARITY OF REWARD FUNCTIONS). Every reward
function is submodular, that is, if B ⊆ B′, and point p ∈ S such that p /∈ B and p /∈ B′,
then rf(A,B ∪ {p}) − rf(A,B) ≥ rf(A,B′ ∪ {p}) − rf(A,B′).

Some readers may wonder why rf(A,∅) = 0 is not an axiom. While this is true of
many reward functions, there are reward functions where we may wish to penalize the
agent for “bad” predictions. Consider the following reward function.

Definition 3.2 (Penalizing Reward Function). Given a distance dist, we define the
penalizing reward function, prfdist(A,B), as follows.

1
2

+
|{p ∈ A|∃p′ ∈ B s.t. d(p, p′) ≤ dist}|

2 · |A| − |{p ∈ B| 
 ∃p′ ∈ A s.t. d(p, p′) ≤ dist}|
2 · |S|

PROPOSITION 3.2. prf is a valid reward function.

Example 3.1. Consider Example 2.1 and the explanation A ≡ {p40, p46} (resembling
actual locations of the drug labs), the set B ≡ {p38, p41, p44, p56} (representing areas
that the drug enforcement officials wish to search), distance dist = 100 meters. There is
only one point in A that is within 100 meters of a point in B (point p40) and 3 points in
B more than 100 meters from any point in A (points p38, p44, p56). These relationships
are shown visually in Figure 2. Hence, prfdist(A,B) = 0.5 + 0.25 − 0.011 = 0.739.
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Fig. 2. Dashed circles encompass all feasible points within 100 meters from explanation {p40, p45}.

prf penalizes the agent if he poorly selects points in S. The agent starts with a
reward of 0.5. The reward increases if he finds points close to elements of A; otherwise,
it decreases.

A reward function is zero-starting if rf(A,∅) = 0, that is, the agent gets no reward if
he infers nothing.

Definition 3.3. A reward function, rf, is monotonic if (i) it is zero-starting and (ii) if
B ⊆ B′ then rf(A,B) ≤ rf(A,B′).

We now define several example monotonic reward functions.
The intuition behind the cutoff reward function crf is simple: For a given distance

dist (the “cut-off” distance), if for every p ∈ A, there exists p′ ∈ B such that d(p, p′) ≤
dist, then p′ is considered “close to” p.

Definition 3.4 (Cutoff Reward Function). Reward function based on a cut-off dis-
tance, dist.

crfdist(A,B) :=
card({p ∈ A|∃p′ ∈ B s.t. d(p, p′) ≤ dist})

card(A)

The following proposition shows that the cutoff reward function is a valid, monotonic
reward function.

PROPOSITION 3.3. crf is a valid, monotonic reward function.

Example 3.2. Consider Example 3.1. Here, crfdist(A,B) returns 0.5 as one element
of A is within 100 meters of an element in B.

By allowing a more general notion of “closeness” between points p ∈ A and p′ ∈ E ,
we are able to define another reward function, the falloff reward function, frf. This
function provides the most reward if p = p′ but, unlike the somewhat binary crf,
gently lowers this reward to a minimal zero as distances d(p, p′) grow.
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Definition 3.5 (Falloff Reward Function). Reward function with value based on
minimal distances between points.

frf(A,B) :=

{
0 if B = ∅∑

p∈A
1

|A|+minp′∈B(d(p,p′)2) otherwise

with d(p, p′) :=
√

(px − p′
x)2 + (py − p′

y)2. In this case, the agent’s reward is inversely
proportional to the square of the distance between points, as the search area required
grows proportionally to the square of this distance.

PROPOSITION 3.4. frf is a valid, monotonic reward function.

In practice, an agent may assign different weights to points in S based on the per-
ceived importance of their partner observations in O. The “weighted reward function”
wrf gives greater reward for being “closer” to points in A that have high weight than
those with lower weights.

Definition 3.6 (Weighted Reward Function). Given weight function W : S → R
+,

and a cut-off distance dist we define the weighted reward function to be:

wrf (W,dist)(A,B) :=

∑
{p∈A|∃p′∈B s.t. d(p,p′)≤dist} W(p)∑

p′∈A W(p′)
.

PROPOSITION 3.5. wrf is a valid, monotonic reward function.

It is easy to see that the weighted reward function is a generalization of the cutoff
reward function where all weights are 1.

It is important to note that we have introduced reward functions axiomatically.
There are numerous other reward functions that satisfy the axioms given in Defini-
tion 3.1 that can be defined in an application. There is no guarantee that the few spe-
cific instances of a reward function we have defined are the only good ones; application
developers are welcome to use their own.

3.1. Incorporating Mixed Strategies

In this section, we introduce pdfs over strategies (or “mixed strategies” [Leyton-Brown
and Shoham 2008]) and introduce the notion of “expected reward.” We first present
explanation/strategy functions which return an explanation (respectively strategy) of
a certain size for a given set of observations.

Definition 3.7 (Explanation/Strategy Function). An explanation (respectively strat-
egy) function is any function ef : 2S × N → 2S (respectively sf : 2S × N → 2S) that,
given a set O ⊆ S and k ∈ N, returns a set E ⊆ S such that E is a k-sized explana-
tion of O (respectively E is a k-sized subset of S). Let EF be the set of all explanation
functions.

Example 3.3. Following from Example 2.1, we shall define two functions ef1, ef2,
which for set O (defined in Example 2.1) and k ≤ 3, give the following sets.

ef1(O, 3) = {p42, p45, p48}
ef2(O, 3) = {p40, p46}

These sets may correspond to explanations from various sources. Perhaps they corre-
spond to the answer of an algorithm that drug-enforcement officials use to solve GAPs.
Conversely, they could also be the result of a planning session by the drug cartel to
determine optimal locations for the drug labs.
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In theory, the set of all explanation functions can be infinitely large; however, it
makes no sense to look for explanations containing more points than S, so we assume
explanation functions are only invoked with k ≤ M × N.

A strategy function is appropriate for an agent who wants to select points resem-
bling what the adversary selected, but is not required to produce an explanation. Our
results typically do not depend on whether an explanation or strategy function is used
(when they do, we point it out). Therefore, for simplicity, we use “explanation function”
throughout the article. In our complexity results, we assume that explanation/strategy
functions are computable in constant time.

Both the agent and the adversary do not know the explanation function (where
is the adversary going to put his weapons caches? Where will US forces search for
them?) in advance. Thus, they use a pdf over explanation functions to estimate their
opponent’s behavior, yielding a “mixed” strategy.

Definition 3.8 (Explanation Function Distribution). Given a space S, real numbers
α, β, feasibility predicate feas, and an associated set of explanation functions EF, an
explanation function distribution is a finitary4 probability distribution efd : EF → [0, 1]
with

∑
ef∈EF efd(ef) = 1. Let EFD be a set of explanation function distributions.

We use |efd| to denote the cardinality of the set EF associated with efd.

Example 3.4. Following from Example 3.3, we shall define the explanation function
distribution efddrug that assigns a uniform probability to explanation functions in the
set ef1, ef2 (i.e., efddrug(ef1) = 0.5).

We now define an “expected reward” that takes into account these mixed strategies
specified by explanation function distributions.

Definition 3.9 (Expected Reward). Given a reward function rf, and explanation
function distributions efdadv, efdag, the expected reward is the function EXRrf : EFD ×
EFD → [0, 1] defined as follows.
EXRrf(efdadv, efdag) =

∑
efadv∈EFadv

(
efdadv(efadv) ·∑efag∈EFag

efdag(efag) · rf(efadv, efag)
)

However, in this article, we will generally not deal with expected reward directly,
but two special cases (expected adversarial detriment and expected agent benefit) in
which the adversary’s and agent’s strategies are not mixed respectively. We explore
these two special cases in the next two sections.

4. SELECTING A STRATEGY FOR THE ADVERSARY

In this section, we study how an adversary would select points (set A) in the space he
would use to cause observations O. For instance, in the IED example, the adversary
needs to select A and O so that A is an explanation for O. We assume the adversary
has a probabilistic model of the agent’s behavior (an explanation function distribution)
and that he wants to eventually find an explanation (e.g., where to put his weapons
caches). Hence, though he can use expected reward to measure how close the agent will
be to his explanation, only the agent’s strategy is mixed. The adversary’s actions are
concrete. Hence, we introduce a special case of expected reward: expected adversarial
detriment.

4That is, efd assigns nonzero probabilities to only finitely many explanation functions.
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Definition 4.1 (Expected Adversarial Detriment). Given any reward function rf and
explanation function distribution efd, the expected adversarial detriment is the func-
tion EXDrf : EFD × 2S → [0, 1] defined as follows.

EXDrf(efd,A) =
∑

ef∈EF
rf(A, ef(O, k)) · efd(ef)

Intuitively, the expected adversarial detriment is the expected number of partner lo-
cations the agent may uncover if efd is correct. Consider the following example.

Example 4.1. Following from the previous examples, suppose the drug cartel is
planning three drug labs. Suppose they have information that drug-enforcement
agents will look for drug labs using efddrug (Example 3.4). One suggestion the adver-
sary may consider is to put the labs at locations p41, p52 (see Figure 1). Note that this
explanation is optimal with respect to cardinality. With dist = 100 meters, they wish
to compute EXDcrf(efddrug, {p41, p52}). We first need to find the reward associated with
each explanation function (see Example 3.3).

crfdist({p41, p52}, ef1(O, 3)) = 1

crfdist({p41, p52}, ef2(O, 3)) = 0.5

Thus, EXDcrf(efddrug, {p41, p52}) = 0.5 · 1 + 0.5 · 0.5 = 0.75. Hence, this is probably not
the best location for the cartel to position the labs with respect to crf and efd, because
the expected adversarial detriment of the drug-enforcement agents is large.

The expected adversarial detriment is a quantity that the adversary would seek to
minimize. This is now defined as an optimal adversarial strategy next.

Definition 4.2 (Optimal Adversarial Strategy). Given a set of observations O, nat-
ural number k, reward function rf, and explanation function distribution efd, an op-
timal adversarial strategy is a k-sized explanation A for O such that EXDrf(efd,A) is
minimized.

4.1. The Complexity of Finding an Optimal Adversarial Strategy

In this section, we formally define the Optimal Adversary Strategy (OAS) problem
and study its complexity.

OAS Problem.
INPUT: Space S, feasibility predicate feas, real numbers α, β, set of observations O,
natural number k, reward function rf, and explanation function distribution efd.
OUTPUT: Optimal adversarial strategy A.

We show that the known NP-hard problem Geometric Covering by Discs (see
Section 2) is polynomially reducible to OAS, which establishes NP-hardness.

THEOREM 4.1. OAS is NP-hard.

The proof of the previous theorem yields two insights. First, OAS is NP-hard even
if the reward function is monotonic (or antimonotonic). Second, OAS remains NP-hard
even if the cardinality of EF is small; in the construction we only have one explanation
function. Thus, we cannot simply pick an “optimal” function from EF. To show an
upper bound, we define OAS-DEC to be the decision problem associated with OAS. If
the reward function is computable in polynomial time, OAS-DEC is in NP.
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OAS-DEC.
INPUT: Space S, feasibility predicate feas, real numbers α, β, set of observations O,
natural number k, reward function rf, explanation function distribution efd, and num-
ber R ∈ [0, 1].
OUTPUT: “Yes” if there exists an adversarial strategy A such that EXDrf(efd,A) ≤ R,
“no” otherwise.

THEOREM 4.2. If the reward function is computable in PTIME, then OAS-DEC is
NP-complete.

Suppose we have an NP oracle that can return an optimal adversarial strategy;
let’s call it A. Quite obviously, this is the best response of the adversary to the mixed
strategy of the agent. Now, how does the agent respond to such a strategy? If we were
to assume that such a solution were unique, then the agent would simply have to find
an strategy B such that rf(A,B) is maximized. This would be a special case of the
problem we discuss in Section 5. However, this is not necessarily the case. A natural
way to address this problem is to create a uniform probability distribution over all
optimal adversarial strategies and optimize the expected reward, again a special case
of what is to be discussed in Section 5. However, obtaining the set of explanations is not
an easy task. Even if we had an easy way to exactly compute an optimal adversarial
strategy, finding all such strategies is an even more challenging problem. In fact, it is
at least as hard as the counting version of GCD, which we already have shown #P-hard
and difficult to approximate. This is shown in the following theorem.

THEOREM 4.3. Finding the set of all adversarial optimal strategies that provide a
“yes” answer to OAS-DEC is #P-hard.

4.2. Preprocessing and Naive Approach

In this section, we present several algorithms to solve OAS. We first present a simple
routine for preprocessing followed by a naive enumeration-based algorithm.

We use � to denote the maximum number of partners per observation and f
to denote the maximum number of observations supported by a single partner. In
general, � is bounded by π(β2 −α2), but may be lower depending on the feasible points
in S. Likewise, f is bounded by min(|O|,�) but may be much smaller depending on
the sparseness of the observations.

Preprocessing Procedure. Given a space S, a feasibility predicate feas, real numbers
α ≥ 0, β > 0, and a set O of observations, we create two lists (similar to a standard
inverted index) as follows.

— Matrix M. M is an array of size S. For each feasible point p ∈ S, M[p] is a list
of pointers to observations. M[p] contains pointers to each observation o such that
feas(p) is true and such that d(o, p) ∈ [α, β].

— List L. List L contains a pointer to position M[p] in the array M iff there exists an
observation o ∈ O such that feas(p) is true and such that d(o, p) ∈ [α, β].

It is easy to see that we can compute M and L in O(|O| · �) time. The next example
shows how M, L apply to our running drug example.

Example 4.2. Consider our running example concerning the location of drug labo-
ratories that started with Example 2.1. The set L consists of {p1, . . . , p67}. The matrix
M returns lists of observations that can be associated with each feasible point. For
example, M(p40) = {o3, o4, o5} and M(p46) = {o1, o2}.
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Fig. 3. Set L of all possible partners for our drug laboratory location example.

Naive Approach. After preprocessing, a straightforward exact solution to OAS would
be to enumerate all subsets of L that have a cardinality less than or equal to k. Let us
call this set L∗. Next, we eliminate all elements of L∗ that are not valid explanations.
Finally, for each element of L∗, we compute the expected adversarial detriment and
return the element of L∗ for which this value is the least. Clearly, this approach is
impractical as the cardinality of L∗ can be very large. Further, this approach does not
take advantage of the specific reward functions. We now present Mixed Integer Linear
Programs (MILPs) for wrf and frf and later look at ways to reduce the complexity of
solving these MILPs.

4.3. Mixed Integer Linear Programs for OAS under wrf, crf, frf

We present Mixed Integer Linear Programs (MILPs) to solve OAS exactly for some
specific reward functions. First, we present a mixed integer linear program for the
reward function wrf. Later, in Section 4.4, we show how to improve efficiency (while
maintaining optimality) by reducing the number of variables in the MILP. Note that
these constraints can also be used for crf as wrf generalizes crf. We also define a
MILP for the frf reward function.

While these mixed integer programs may appear nonlinear, Proposition 4.4 gives a
simple transformation to standard linear form. For readability, we define the MILPs
before discussing this transformation.

Definition 4.3 (wrf MILP). Given real number dist > 0 and weight function W , as-
sociate a constant wi with the weight W(pi) of each point pi ∈ L. Next, for each pi ∈ L
and ef j ∈ EF, let constant ci, j = 1 iff ∃p′ ∈ ef(O, k) such that d(p′, pi) ≤ dist and 0 other-
wise. Finally, associate an integer-valued variable Xi with each pi ∈ L.
Minimize:

∑
ef j∈EF

⎛
⎝efd(ef j) ·

∑
pi∈L

(
Xi · wi · ci, j∑

pi∈L wi · Xi

)⎞⎠
subject to:

(1) Xi ∈ {0, 1};
(2) Constraint

∑
pi∈L Xi ≤ k;
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(3) For each o j ∈ O, add constraint∑
pi∈Ld(o j,pi)∈[α,β]

Xi ≥ 1.

Example 4.3. Continuing from Examples 4.1 and 4.2, suppose the drug car-
tel wishes to produce an adversarial strategy A using wrf. Consider the case
where we use crf, k ≤ 3, and dist = 100 meters as before (see Example 4.1).
Clearly, there are 67 variables in these constraints, as this is the cardinality
of set L (as per Example 4.2). The constants ci,1 are 1 for elements in the set
{p35, p40, p41, p42, p43, p44, p45, p46, p49, p49, p50, p52, p56} (and 0 for all others). The
constants ci,2 are 1 for elements in the set {p33, p37, p40, p41, p45, p46, p47, p48} (and 0
for all others).

We can create a MILP for frf as follows.

Definition 4.4 (frf MILP). For each pi ∈ L and ef j ∈ EF, let constant ci, j =
minp′∈ef(O,k)(d(pi, p′)2). Associate an integer-valued variable Xi with each pi ∈ L.
Minimize:

∑
ef j∈EF

⎛
⎝efd(ef j) ·

∑
pi∈L

(
Xi · 1

ci, j +
∑

pi∈L Xi

)⎞⎠
subject to:

(1) Xi ∈ {0, 1};
(2) Constraint

∑
pi∈L Xi ≤ k;

(3) For each o j ∈ O, add constraint∑
pi∈Ld(o j,pi)∈[α,β]

Xi ≥ 1.

The following theorem tells us that solving the preceding MILPs correctly yields a
solution for the OAS problem under both wrf or frf.

PROPOSITION 4.1. Suppose S is a space, O is an observation set, real numbers α ≥
0, β > 0, and suppose the wrf and frf MILPs are defined as earlier.

(1) Suppose A ≡ {p1, . . . , pn} is a solution to OAS with wrf(respectively frf). Consider
the assignment that assigns 1 to each X1, . . . , Xn corresponding to the pi’s and 0
otherwise. This assignment is an optimal solution to the MILP.

(2) Given the solution to the constraints, if for every Xi = 1, we add point pi to set A,
then A is a solution to OAS with wrf(respectively frf).

Setting up either set of constraints can be performed in polynomial time, where
computing the ci, j constants is the dominant operation.

PROPOSITION 4.2. Setting up the wrf/frf constraints can be accomplished in
O(|EF| · k · |O| · �) time (provided the weight function W can be computed in constant
time).

The number of variables for either set of constraints is related to the size of L, which
depends on the number of observations, spacing of S, and α, β.

PROPOSITION 4.3. The wrf/frf constraints have O(|O| · �) variables and 1 + |O|
constraints.

The MILPs for wrf and frf appear nonlinear as the objective function is fractional.
However, as the denominator is nonzero and strictly positive, the Charnes-Cooper
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transformation [Charnes and Cooper 1962] allows us to quickly (in the order of number
of constraints multiplied by the number of variables) transform the constraints into a
purely integer linear form. Many linear and integer linear program solvers include
this transformation in their implementation.

PROPOSITION 4.4. The wrf/frf constraints can be transformed into a purely linear
integer form in O(|O|2 · �) time.

We note that a linear relaxation of any of the aforesaid three constraints can yield
a lower bound on the objective function in O(|L|3.5) time.

PROPOSITION 4.5. Given the constraints of Definition 4.3 or Definition 4.4, if we
consider the linear program formed by setting all Xi variables to be in [0, 1], then the
value returned by the objective function will be a lower bound on the value returned
by the objective function for the mixed integer linear constraints, and this value can be
obtained in O(|O|3.5 · �3.5) time.

Likewise, if we solve the mixed integer linear program with a reduced number of
variables, we are guaranteed that the solution will cause the objective function to be
an upper bound for the original set of constraints.

PROPOSITION 4.6. Consider the MILPs in Definition 4.3 and Definition 4.4. Sup-
pose L ′ ⊂ L and every variable Xi associated with some pi ∈ L′ is set to 0. The resulting
solution is an upper bound on the objective function for the constraints solved on the
full set of variables.

4.4. Correctly Reducing the Number of Variables for crf
As the complexity of solving MILPs is closely related to the number of variables in
the MILP, the goal of this section is to reduce the number of variables in the MILP
associated before with the crf reward function. We note that all results in this section
apply only for the crf reward function. In this section, we show that if we can find
a certain type of explanation called a δ-core optimal explanation, then we can “build-
up” an optimal adversarial strategy in polynomial time. It also turns out that finding
these special explanations can be accomplished using an MILP which will often have
significantly fewer variables than the MILPs of the last section. First, we consider the
wrf constraints applied to crf which is a special case of wrf. The objective function for
this case is

∑
ef j∈EF

⎛
⎝efd(ef j) ·

∑
pi∈L

(
Xi · ci, j∑

pi∈L Xi

)⎞⎠ ,

where for each pi ∈ L and ef j ∈ EF, ci, j = 1 iff ∃p′ ∈ ef j(O, k) such that d(p′, pi) ≤ dist
and 0 otherwise. If we rearrange the objective function, we see that with each Xi
variable associated with point pi ∈ L, there is an associated constant consti.

consti =
∑

ef j∈EF
efd(ef j) · ci, j

This lets us rewrite the objective function as∑
pi∈L Xi · consti∑

pi∈L Xi
.
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Example 4.4. Continuing from Example 4.3, consti = 0.5 for the following ele-
ments: {p33, p35, p37, p42, p43, p44, p47, p49, p50, p52, p56}; consti = 1 for these elements:
{p40, p41, p45, p46, p48}, and 0 for all others.

In many covering problems where we wish to find a cover of minimal cardinality,
we could reduce the number of variables in the integer program by considering equiv-
alent covers as duplicate variables. However, for OAS, this technique cannot be easily
applied. The reason for this is because an optimal adversarial explanation is not neces-
sarily irredundant (see Definition 2.5). Consider the following. Suppose we wish to find
an optimal adversarial strategy of size k. Let P be an irredundant cover of size k – 1.
Suppose there is some element p′ ∈ P that covers only one observation o′. Hence, there
is no p ∈ P−{p′} that covers o′ by the definition of an irredundant cover. Suppose there
is also some p′′ /∈ P that also covers o′. Now, let m =

∑
pi∈P−p′ consti. In our construc-

tion of an example solution to OAS that is not irredundant, we let const′ be the value
associated with both p′ and p′′. Consider the scenario where const′ < m

k−2 . Suppose by
way of contradiction that the optimal irredundant cover is also the optimal adversarial
strategy. Then, by the definition of an optimal adversarial strategy we know that the
set P is more optimal than P ∪ {p′′}. This would mean that m+const′

k−1 < m+2·const′
k . This

leads us to infer that m < const′· (k – 2), which clearly contradicts const′ < m
k−2 . It is

clear that a solution to OAS need not be irredundant.
Even though an OAS is not necessarily irredundant, we are able to reduce the size

of the set L by looking at certain aspects of an OAS. Our intuition is that each OAS
contains a core explanation which has fewer redundant elements than the OAS and
low values of const for each element in that set. Once this type of explanation is found,
we can build an optimal adversarial strategy in polynomial time. First, we define a
core explanation.

Definition 4.5 (Core Explanation). Given an observation set O and set L of possible
partners, an explanation Ecore is a core explanation iff for any pi ∈ Ecore, there does not
exist pj ∈ L such that:

(1) ∀o ∈ O if o, pi are partners, then o, pj are also partners.
(2) constj < consti.

We now show that any optimal adversarial strategy contains a subset that is a core
explanation.

THEOREM 4.4. If A is an optimal adversarial strategy, there exists a core explana-
tion Ecore ⊆ A.

Example 4.5. Continuing from Example 4.4, consider the set A ≡ {p34, p38, p57}
(which would correspond to drug lab locations as planned by the cartel). Later, we
show that this is an optimal adversarial strategy (the expected adversarial detriment
associated with A is 0). Consider the subset p34, p38. As p34 explains observations
o3, o4, o5, and p38 explains observations o1, o2, this set is also an explanation. Obvi-
ously, it is of minimal cardinality. Hence, the set {p34, p38} is a core explanation
of A.

Suppose we have an oracle that, for a given k, O, and efd returns a core explanation
Ecore that is guaranteed to be a subset of the optimal adversarial strategy associated
with k, O, and efd. The following theorem says we can find the optimal adversarial
strategy in polynomial time. The key intuition is that we need not concern ourselves
with covering the observations as Ecore is an explanation. The algorithm BUILD-STRAT
follows from this theorem.
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ALGORITHM 1: BUILD-STRAT
INPUT: Partner list L, core explanation Ecore, natural number k, explanation function distribu-
tion efd
OUTPUT: Optimal adversarial strategy A
(1) If |Ecore| = k, return Ecore

(2) Set A = Ecore. Let k′ = |Ecore|
(3) Sort the set L − Ecore by consti. Let L ′ = {p1, . . . , pk−k′ } be the k − k′ elements of this set with

the lowest values for consti, in ascending order
(4) For each pi ∈ L ′ let Pi be the set {p1, . . . , pi}
(5) For each Pi let Si =

∑
j≤i constj

(6) Let ans = minpi∈L′ ({ k′ ·EXDrf
(efd,Ecore)+Si
k′+i })

(7) Let Pans be the Pi associated with ans
(8) If ans ≥ EXDrf(efd, Ecore), return Ecore, else return Ecore ∪ Pans

THEOREM 4.5. If there is an oracle that for any given k, O, and efd returns a core
explanation Ecore that is guaranteed to be a subset of the optimal adversarial strategy
associated with k, O, and efd, then we can find an optimal adversarial strategy in
O(� · |O| · log(� · |O|) + (k − |Ecore|)2) time.

We now introduce the notion of δ-core optimal. Intuitively, this is a core explana-
tion of cardinality exactly δ that is optimal with respect to the expected adversarial
detriment compared to all other core explanations of that cardinality.

Definition 4.6. Given an integer δ > 0, an explanation distribution function efd,
and a reward function rf, a core explanation Ecore is δ-core optimal iff:

— |Ecore| = δ.
— There does not exist another core explanation E ′

core of cardinality exactly δ such that
EXDrf(efd, E ′

core) < EXDrf(efd, Ecore).

We now define some subsets of the set L that are guaranteed to contain core expla-
nations and δ-core optimal explanations as well. In practice, these sets will be much
smaller than L and will be used to create an MILP of reduced size.

Definition 4.7 (Reduced Partner Set). Given observations O and set of possible part-
ners L, we define the reduced partner set L∗∗ as follows.

L∗∗ ≡ {pi ∈ L| 
 ∃pj ∈ L such that (constj < consti) ∧ (∀o ∈ O such that o, pi are partners,
o, pj are also partners)}

We define L∗ as follows.

L∗ ≡ {pi ∈ L∗∗| 
 ∃pj ∈ L∗∗ such that (constj = consti) ∧ (∀o ∈ O such that o, pi are partners,
o, pj are also partners)}

LEMMA 4.6. (1) If explanation E is a core explanation, then E ⊆ L∗∗.
(2) If explanation E is δ-core optimal, then E ⊆ L∗∗.
(3) If for some natural number δ, there exists an explanation of size δ, then there exists

a δ-core optimal explanation E such that E ⊆ L∗.

The reduced partner set can be computed in polynomial time. We also note that under
the assumption that |O| << |L|, which we have found true in practice, determining
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Table I. The Set L Partitioned by consti and Supported Observations

Supported Observations consti = 0 consti = 0.5 consti = 1

o1 p4 − p6, p12 − p16, p22 − p23, p30 − p31 p44

o1, o2 p38 p37, p52 p45, p46

o2 p64, p67 p47

o2, o3 p57

o3 p17 − p19, p24 − p26, p32, p39, p58 − p59

o3, o4 p27 − p28 p33

o4 p1 − p3, p7 − p11, p20 − p21, p29, p51 p50

o3, o4, o5 p34, p53 − p54 p49 p40 − p41

o5 p36, p60 − p66 p35

o4, o5 p42 − p43

o3, o5 p55 p56 p48

the set L∗∗ or L∗ can be accomplished faster (in terms of time complexity) than solving
even a relaxation of the original MILP.

PROPOSITION 4.7. Given set L, set L∗ and L∗∗ can be found in O(|L|2 · |O|2) time.

Example 4.6. Let us continue from Example 4.5. Based on preprocessing and the
computation of consti, we can easily produce the data of Table I in polynomial time.
Based on this, we obtain a reduced partner set L∗ ≡ {p34, p38, p57}.

Next, the following lemma tells us that an OAS must contain a core explanation
that is δ-core optimal.

LEMMA 4.6. Given an optimal adversarial strategy A, there exists some δ ≤ |A| such
that there is a δ-core optimal explanation that is a subset of A (using the crf reward
function).

Thus, if we can find the δ-core optimal explanation that is contained in an OAS, we
can then find the OAS. If we know δ, such an explanation can be found using an MILP.
We now present a set of integer linear constraints to find a δ-core optimal explanation.
Of course we can easily adopt the constraints of the previous section, but this would
offer us no improvement in performance. We therefore create an MILP that should
have a significantly smaller number of variables in most cases.

To create this MILP, we take a given set of possible partners L and calculate the
set L∗ (the reduced partner set), which often will have a cardinality much smaller
than L. Next, we use L∗ to form a new set of constraints to find a δ-core optimal
explanation. We now present these δ-core constraints. Notice that the cardinality
requirement in these constraints is “=” and not “≤”. This is because Lemma 4.6
ensures a core explanation that is δ-core optimal, meaning that the core explana-
tion must have cardinality exactly δ. This also allows us to eliminate variables
from the denominator of the objective function, as the denominator must equal δ as
well.

Definition 4.8 (δ-core MILP). Given parameter δ and reduced partner set L∗, we
define the δ-core constraints by first associating a variable Xi with each point pi ∈ L∗,
then solving:
Minimize:

1
δ

∑
pi∈L∗

Xi · consti
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subject to:

(1) Xi ∈ {0, 1}.
(2) Constraint

∑
pi∈L Xi = δ.

(3) For each o j ∈ O, add constraint∑
pi∈L∗ d(o j,pi)∈[α,β]

Xi ≥ 1.

Example 4.7. Using set L∗ from Example 4.6, we can create δ-core constraints as
follows:
Minimize:

1
δ

(X34 · const34 + X38 · const38 + X57 · const57)

subject to:

(1) X34, X38, X57 ∈ {0, 1}
(2) X34 + X38 + X57 = δ
(3) X38 ≥ 1 (for observation o1)
(4) X38 + X57 ≥ 1 (for observation o2)
(5) X34 + X57 ≥ 1 (for observation o3)
(6) X34 ≥ 1 (for observations o4, o5)

In the worst case, the set L∗ ≡ L. Hence, we can assert the following:

PROPOSITION 4.8. The δ-core constraints require O(� · |O|) variables and 1 + |O|
constraints.

PROPOSITION 4.9. Given δ-core constraints:

(1) Given set δ-core optimal explanation Ecore ≡ {p1, . . . , pn}, if variables
X1, . . . , Xn—corresponding with elements in A—are set to 1 and the rest of the vari-
ables are set to 0, the objective function of the constraints will be minimized.

(2) Given the solution to the constraints, if for every Xi = 1, we add point pi to set Ecore,
then Ecore is a δ-core optimal solution.

We now have all the pieces required to leverage core explanations and reduced part-
ner sets to find an optimal adversarial strategy. By Theorem 4.5, we know that any
optimal adversarial strategy must have a core explanation. Further, by Lemma 4.6,
such a core explanation is δ-core optimal. Using a (usually) much smaller mixed in-
teger linear program, we can find such an explanation. We can then find the optimal
adversarial strategy in polynomial time using BUILD STRAT. Though we do not know
what δ is, we know it must be in the range [1, k]. Further, using a relaxation of the
OPT-KSEP-IPC constraints for solving geospatial abduction problems (as presented in
Shakarian et al. [2010]), we can easily obtain a lower bound tighter than 1 on δ. Hence,
if we solve k such (most likely small) mixed integer linear programs, we are guaran-
teed that at least one of them must be a core explanation for an optimal adversarial
strategy. We note that these k MILPs can be solved in parallel (and the following k
instances of BUILD-STRAT can also be run in parallel as well). An easy comparison of
the results of the parallel processes would be accomplished at the end. As L∗ is likely
to be significantly smaller than L, this could yield a significant reduction in complex-
ity. Furthermore, various relaxations of this technique can be used (e.g., only using
one value of δ).

Example 4.8. Continuing from Example 4.7, where the cartel members are at-
tempting to find an OAS to best position drug laboratories, suppose they used the
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relaxation of OPT-KSEP-IPC (from Shakarian et al. [2010]) to obtain a lower bound on
the cardinality of an explanation and found it to be 2. With k = 3, they would solve
two MILPs of the form of Example 4.7: one with δ = 2 and one with δ = 3. The solution
to the first MILP would set X34 and X38 both to 1 while the second MILP would set
X34, X38, and X57 all to 1. As the expected adversarial detriment for both solutions is
0, they are both optimal and running BUILD-STRAT is not necessary. Either {p34, p38}
or {p34, p38, p57} can be returned as an OAS.

5. FINDING A COUNTER-ADVERSARY STRATEGY

Now that we have examined ways in which the adversary can create a strategy based
on probabilistic knowledge of the agent, we consider how the agent can devise an “op-
timal” strategy to counter the adversary. As before, we use a special case of expected
reward (Definition 3.1 from Section 3.9).

Definition 5.1 (Expected Agent Benefit). Given a reward function rf and explana-
tion function distribution efd, the expected agent benefit is the function EXBrf :
2S × EFD → [0, 1] defined as follows.

EXBrf(B, efd) =
∑

ef∈EF
rf(ef(O, k),B) · efd(ef)

Example 5.1. Following from Examples 2.1 and 3.4, suppose drug-enforcement
agents have information that the cartel is placing drug labs according to efddrug. (Such
information could come from multiple runs of the GREEDY-KSEP-OPT2 algorithm
of Shakarian et al. [2010]). The drug-enforcement agents wish to consider the set
B ≡ {p41, p52}. First, they must calculate the reward associated with each explanation
function (note that k = 3, dist = 100, and rf = crf).

crfdist(ef1(O, 3), {p41, p52}) = 0.67

crfdist(ef2(O, 3), {p41, p52}) = 0.5

(As an aside, we would like to point out the asymmetry in crf; compare these compu-
tations with the results of Example 4.1). Hence, EXBcrf({p41, p52}, efddrug) = 0.634.

We now define a maximal counter-adversary strategy.

Definition 5.2 (Maximal Counter-Adversary Strategy (MCA)). Given a reward func-
tion rf and explanation function distribution efd, a maximal counter-adversary strat-
egy, B, is a subset of S such that EXBrf(B, efd) is maximized.

Note that MCA does not include a cardinality constraint. This is because we do
not require reward functions to be monotonic. In the monotonic case, we can triv-
ially return all feasible points in S and be assured of a solution that maximizes the
expected agent benefit. Therefore, for the monotonic case, we include an extra param-
eter B ∈ {1, . . . , |S|} (for “budget”) which will serve as a cardinality requirement for B.
This cardinality requirement for B is necessarily the same as for A as the agent and
adversary may have different sets of resources. Also, we do not require that B be an
explanation. We discuss the special case where the solution to the MCA problem is
required to be an explanation in the Appendix.

5.1. The Complexity of Finding a Maximal Counter-Adversary Strategy

We now formally define the problem of finding a maximal counter-adversary strategy.
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MCA Problem.
INPUT: Space S, feasibility predicate feas, real numbers α, β, set of observations O,
natural numbers k, B, reward function rf, and explanation function distribution efd.
OUTPUT: Maximal counter-adversary strategy B.

MCA is NP-hard via a reduction of the GCD problem.

THEOREM 5.1. MCA is NP-hard.

The proof of the preceding result shows that MCA is NP-hard even if the reward
function is monotonic. Later, in Section 5.3, we also show that MCA can encode the
NP-hard MAX-K-COVER problem [Feige 1998] as well (which provides an alternate
proof for NP-hardness of MCA). We now present the decision problem associated with
MCA and show that it is NP-complete under reasonable conditions.

MCA-DEC.
INPUT: Space S, feasibility predicate feas, real numbers α, β, set of observations O,
natural numbers k, B, reward function rf, explanation function distribution efd, and
number R ∈ [0, 1].
OUTPUT: Counter-adversary strategy B such that EXBrf(B, efd) ≥ R.

THEOREM 5.2. MCA-DEC is NP-complete, provided the reward function can be
evaluated in PTIME.

Not only is MCA-DEC NP-hard, under the same assumptions as earlier, the counting
version of the problem is #P-complete and moreover, it has no fully polynomial random
approximation scheme.

THEOREM 5.3. Counting the number of strategies that provide a “yes” answer to
MCA-DEC is #P-complete and has no FPRAS unless NP=RP.

Theorem 5.3 tells us that MCA may not have a unique solution. Therefore, setting
up a mixed strategy of all MCAs to determine the “best response” to the MCA of an
agent by an adversary would be an intractable problem. This mirrors our result of the
previous section (Theorem 4.3).

5.2. MCA in the General Case: Exact and Approximate Algorithms

We now describe exact and approximate algorithms for finding a maximal counter-
adversary strategy in the general case. Note that throughout this section (as well
as in Section 5.3), we assume that the same preprocessing for OAS is used (refer to
Section 4.2). We will use the symbol L to refer to the set of all possible partners.

An Exact Algorithm For MCA. A naive, exact, and straightforward approach to the MCA
problem would simply consider all subsets of L and pick the one which maximizes the
expected agent benefit. Obviously, this approach has a complexity O

(∑|S|
i=0

(|L|
i

))
and is

not practical. This is unsurprising as we showed this to be an NP-complete problem.

Approximation in the General Case. Despite the impractical time complexity associated
with an exact approach, it is possible to approximate MCA with guarantees, even in
the general case. This is due to the fact that when efd is fixed, the expected agent
benefit is submodular.
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ALGORITHM 2: (MCA-LS)
INPUT: Reward function rf, set O of observations, explanation function distribution efd, possible
partner set L, real number ε > 0
OUTPUT: Set B ⊂ S
(1) Set B∗ = L, for each pi ∈ B∗ let inci = EXBrf({p}, efd) − EXBrf(∅, efd).
(2) Sort the pi’s in B∗ from greatest to least by inci (i.e., p1 is the element with the greatest

inci).
(3) B = {p1}, B∗ = B∗ − {p1}, cur val = inc1 + EXBrf(∅,efd), f lag1 = true, i = 2
(4) While f lag1

(a) new val = cur val + inci

(b) If new val > (1 + ε

|L|2 ) · cur val then

i.If EXBrf(B ∪ {pi}, efd) > (1 + ε

|L|2 ) · EXBrf(B, efd) then:

B = B ∪ {pi}, B∗ = B∗ − {pi}, cur val = EXBrf(B ∪ {pi}, efd)
(c) If new val ≤ (1 + ε

|L|2 ) · cur val or if pi is the last element then
i. j = 1, f lag2 = true, number each pj ∈ B

ii. While f lag2
A. If EXBrf(B − {pj}, efd) > (1 + ε

|L|2 ) · EXBrf(B, efd) then:

B = B − {pj}, cur val = EXBrf(B − {pj},efd)
For each pi ∈ B∗ let inci = EXBrf(B ∪ {pi}, efd) − EXBrf(B, efd).
Sort the pi’s in B∗ from greatest to least by inci

i = 0, f lag2 = false

B. Else,
If pj was the last element of B then set f lag1, f lag2 = false

Otherwise, j + +
(d) i + +

(5) If EXBrf(L − B, efd) > EXBrf(B, efd) then set B = L − B
(6) Return B

THEOREM 5.4. For a fixed O, k, efd, the expected agent benefit, EXBrf(B, efd) has the
following properties:

(1) EXBrf(B, efd) ∈ [0, 1].
(2) For B ⊆ B′ and some point p ∈ S where p /∈ B′, the following is true:

EXBrf(B ∪ {p}, efd) − EXBrf(B, efd) ≥ EXBrf(B′ ∪ {p}, efd) − EXBrf(B′, efd)

(i.e., expected agent benefit is submodular for MCA).

It follows immediately that MCA reduces to the maximization of a submodular func-
tion. We now present the MCA-LS algorithm that leverages this submodularity.

The following two propositions leverage Theorem 5.4 and Theorem 3.4 of Feige et al.
[2007].

PROPOSITION 5.1. MCA-LS has time complexity of O( 1
ε

· |L|3 · F(efd) · lg(|L|) where
F(efd) is the time complexity to compute EXBrf(B, efd) for some set B ⊆ L.

PROPOSITION 5.2. MCA-LS is an ( 1
3 − ε

|L| )-approximation algorithm for MCA.

Example 5.2. Let us consider our running example where drug-enforcement agents
are attempting to locate illegal drug laboratories in the area depicted in Figure 1.
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The agents have information that there are k or fewer drug laboratories that sup-
port the poppy fields (set of observations O) and that they are positioned according
to efddrug (see Example 3.4). The agents wish to find a maximal counter-adversarial
strategy using the prf reward function. They decide to use MCA-LS to find such a
strategy with ε = 0.1. Initially (at line 2), the algorithm selects point p48 (renum-
bering as p1, note that in this example we shall use pi and inci numbering based
on Example 2.1 rather than what the algorithm uses). Hence, inc40 = 0.208 and
cur val = 0.708. As the elements are sorted, the next point to be considered in the
loop at line 2 is p40 which has an incremental increase of 0, so it is not picked. It
then proceeds to point p41, which gives an incremental increase of 0.084 and is added
to B so cur val = 0.792. Point p45 is considered next, which gives an incremental in-
crease of 0.208 and is picked, so now cur val = 1.0. The algorithm then considers
point p46, which does not afford any incremental increase. After considering points
p33, p35, p37, p42, p43, p44, p47, p49, p50, p52, p56, and finding they all give a negative in-
cremental increase (and thus, are not picked), the algorithm finds that the old incre-
mental increase of the next element, p1, would cause the “if” statement at line 4c to
be true, thus proceeding to the inner loop inside that “if” statement (line 4(c)iiA). This
loop considers if the removal of any of the picked elements p48, p41, p45 causes the
expected agent benefit to increase. However, in this example, if any of the elements
are removed, the expected agent benefit decreases. Hence, the boolean f lag1 is set
to false and the algorithm exits the outer loop. The algorithm then returns the set
B ≡ {p48, p41, p45} which is optimal.

5.3. Finding a Maximal Counter-Adversary Strategy, the Monotonic Case

In the previous section we showed a 1
3 approximate solution to MCA can be found in

polynomial time even without any monotonicity restriction. In this section, we show
that under the additional assumptions of monotonicity of reward functions, we can
obtain a better 63% approximation ratio with a faster algorithm. Here, we also have
the additional cardinality requirement of B for the set B (as described in Section 5).
We first show that expected agent benefit is monotonic when the reward function is.

COROLLARY 5.1. For a fixed O, k, efd, if the reward function is monotonic, then the
expected agent benefit, EXBrf(B, efd) is also monotonic.

Thus, when we have a monotonic reward function, the MCA problem reduces to
the maximization of a monotonic, normalized5 submodular function with respect to
a uniform matroid6; this is a direct consequence of Theorem 5.4 and Corollary 5.1.
Therefore, we can leverage the result of Nemhauser et al. [1978], to develop the MCA-
GREEDY-MONO algorithm that follows. We improve performance by including “lazy
evaluation” using the intuition that the incremental increase caused by some point p
at iteration i of the algorithm is greater than or equal to the increase caused by that
point at a later iteration. As with MCA-LS, we also sort elements by the incremental
increase, which may allow the algorithm to exit the inner loop earlier. In most nontriv-
ial instances of MCA, this additional sorting operation will not affect the complexity
of the algorithm (i.e., under the assumption that the time to compute EXBrf is greater
than lg(|L|), we make this same assumption in MCA-LS as well).

5As we include zero-starting in our definition of monotonic.
6In our case, the uniform matroid consists of all subsets of L of size B or less.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 2, Article 34, Publication date: February 2012.



Adversarial Geospatial Abduction Problems 34:23

ALGORITHM 3: (MCA-GREEDY-MONO)
INPUT: Monotonic reward function rf, set O of observations, real number B > 0, explanation
function distribution efd, possible partner set L, real number ε > 0
OUTPUT: Set B ⊂ S
(1) Initialize B = ∅ and B∗ = L
(2) For each pi ∈ B∗, set inci = 0
(3) Set last val = EXBrf(B, efd)
(4) While |B| ≤ B

(a) pbest = null, cur inc = 0
(b) For each pi ∈ B∗, do the following

i. If inci < cur inc, break loop and goto line 3.
ii. Let inci = EXBrf(B ∪ {p}, efd) − last val
iii. If inci ≥ cur inc then cur inc = inci and pbest = p

(c) B = B ∪ {pbest}, B∗ = B∗ − {pbest}
(d) Sort B∗ in descending order by inci.
(e) Set last val = EXBrf(B, efd)

(5) Return B

PROPOSITION 5.3. The complexity of MCA-GREEDY-MONO is O(B · |L| · F(efd))
where F(efd) is the time complexity to compute EXBrf(B, efd) for some set B ⊆ L of
size B. In the first iteration of the algorithm, we have the next corollary.

COROLLARY 5.2. MCA-GREEDY-MONO is an ( e
e−1 )-approximation algorithm for

MCA (when the reward function is monotonic).

In addition to the fact that MCA-GREEDY-MONO is an ( e
e−1 )-approximation algo-

rithm for MCA, it also provides the best possible approximation ratio unless P = NP.
This is done by a reduction of MAX-K-COVER [Feige 1998].

THEOREM 5.5. MCA-GREEDY-MONO provides the best approximation ratio for
MCA (when the reward function is monotonic) unless P = NP.

The following example illustrates how MCA-GREEDY-MONO works.

Example 5.3. Consider the situation from Example 5.2, where the drug-
enforcement agents are attempting to locate illegal drug labs. Suppose they want to
locate the labs, but use the crf reward function, which is monotonic and zero-starting.
They use the cardinality requirement B = 3 in MCA-GREEDY-MONO. After the first
iteration of the loop at line 3, the algorithm selects point p48 as it affords an incremen-
tal increase of 0.417. On the second iteration, it selects point p46, as it also affords
an incremental increase of 0.417, so last val = 0.834. Once p46 is considered, the next
point considered is p33, which had a previous incremental increase (calculated in the
first iteration) of 0.25, so the algorithm can correctly exit the loop to select the final
element. On the last iteration of the outer loop, the algorithm selects point p35, which
gives an incremental increase of 0.166. Now the algorithm has a set of cardinality
3, so it exits the outer loop and returns the set B = {p48, p46, p35}, which provides an
expected agent benefit of 1, which is optimal. Note that this would not be an optimal
solution for the scenario in Example 5.2 which uses prf as p35 would incur a penalty
(which it does not when using crf as in this example).
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6. IMPLEMENTATION AND EXPERIMENTS

In this section, we describe prototype implementations and experiments for solving
the OAS and MCA problems. For OAS, we create an MILP for the crf case and reduce
the number of variables with the techniques we presented in Section 4. For MCA, we
implement both the MCA-LS and MCA-GREEDY-MONO.

We carried out all experiments for MCA on an Intel Core2 Q6600 processor running
at 2.4 GHz with 8GB of memory available, using code written in Java 1.6; all runs
were performed in Windows 7 Ultimate 64-bit using a 64-bit JVM, and made use of a
single core. We also used functionality from the previously implemented SCARE soft-
ware [Shakarian et al. 2009] to calculate, for example, the set of all possible partners
L and to perform preprocessing (see the discussion in Section 4.2).

Our experiments are based on 21 months of real-world Improvised Explosive Device
(IED) attacks in Baghdad7 [Shakarian et al. 2009]. The IED attacks in this 25 × 27
km region constitute our observations. The data also includes locations of caches asso-
ciated with those attacks discovered by U.S. forces. These constitute partner locations.
We used data from the International Medical Corps to define feasibility predicates
based on ethnic makeup, location of U.S. bases, and geographic features. We overlaid
a grid of 100m × 100m cells, about the size of a standard U.S. city block. We split
the data into two parts; the first 7 months of data were used as a “training” set to
learn the [α, β] parameters and the next 14 months of data were used for the observa-
tions. We created an explanation function distribution based on multiple runs of the
GREEDY-KSEP-OPT2 algorithm described in Shakarian et al. [2010].

6.1. OAS Implementation

We now present experimental results for the version of OAS, with the crf reward func-
tion, based on the constraints in Definition 4.3 and variable reduction techniques of
Section 4.4. First, we discuss promising real-world results for the calculation of the
reduced partner set L∗, described in Definition 4.5. Then, we show that an optimal
adversarial strategy can be computed quite tractably using the methods discussed in
Section 4.4. Finally, we compare our results to a set of real-world data, showing a
significant decrease in the adversary’s expected detriment across various parameter
settings. Our implementation was written on top of the QSopt8 MILP solver and used
900 lines of Java code.

Reduced Partner Set. As discussed in Section 4.2, producing an optimal adversarial
strategy for any reward function relies heavily on efficiently solving a (provably worst-
case intractable) integer linear program. The number of integer variables in these
programs is based solely on the size of the partner set L; as such, the ability to exper-
imentally solve OAS relies heavily on the size of this set.

Our real-world data created a partner set L with cardinality 22,692. We then ap-
plied the method from Definition 4.5 to reduce this original set L to a smaller subset of
possible partners L∗, while retaining the optimality of the final solution. This simple
procedure, while dependent on the explanation function distribution efd as well as the
cutoff distance for crf, always returned a reduced partner set L∗ with cardinality be-
tween 64 and 81. This represents around a 99.6% decrease in the number of variables
required in the subsequent integer linear programs!

Figure 4 provides more detailed accuracy and timing results for this reduction. Most
importantly, regardless of parameters chosen, our real-world data is reduced by orders

7Attack and cache location data provided by the Institute for the Study of War.
8http://www2.isye.gatech.edu/˜wcook/qsopt/index.html
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Fig. 4. The size of the reduced partner set L∗ (left) and the time required to compute this reduction (right).
Regardless of parameters chosen, we see a 99.6% decrease in possible partners (as well as integer variables
in our linear program) in under 3 minutes.

of magnitude across the board. Of note, we see a slight increase in the size of the re-
duced set L∗ as the size of the explanation function distribution efd increases. This
can be traced back to the strict inequality in Definition 4.7. As we increase the num-
ber of nontrivial explanation functions in efd, the number of nonzero constants consti
increases. This results in a higher number of candidates for the intermediary set L∗∗.
We see a similar result as we increase the penalizing cutoff distance. Again, this is a
factor of the strict inequality in Definition 4.7 in conjunction with a higher fraction of
nonzero consti constants.

Interestingly, Figure 4 shows a slight decrease in the runtime of the reduction as
we increase the penalizing cutoff distance. Initially, this seems counterintuitive; with
more nontrivial constants consti, the construction of the intermediary set L∗∗ requires
more work. However, this extra work pays off during the computation of the final re-
duced set L∗. In our experiments, the reduction from L to L∗∗ took less time than the
final reduction from L∗∗ to L∗. This is due to frequent short circuiting in the computa-
tion of the right-hand side of the conjunction during L∗∗ creation. As we increase the
penalizing cutoff distance, the size of L∗∗ actually decreases, resulting in a decrease in
the longer computation of L∗. As seen before, this decrease in L∗∗ did not correspond
to a decrease in the size of L∗.

Optimal Adversarial Strategy. Using the set L∗, we now present results to find an opti-
mal adversarial strategy using δ-core optimal explanations. This is done by minimiz-
ing the MILP of Section 4.4, then feeding this solution into BUILD-STRAT. Since we do
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Fig. 5. Expected detriment of the optimal adversarial strategy (left, lower is better) and the runtime of the
integer linear program required to produce this strategy in milliseconds (right). Note the smooth decrease
toward zero detriment as k increases, corresponding with a near-linear increase in total runtime.

not know the value of δ in advance, we must perform this combined operation multiple
times, choosing the best (lowest expected detriment) adversarial strategy as optimal.

A note on the lower bound for δ: As shown by Shakarian et al. [2009], finding a
minimum-cardinality explanation is NP-hard. Because of this, it is computationally
difficult to find a tight lower bound for δ. However, this lower bound can be estimated
empirically. For instance, for our set of real-world data from Baghdad, an explanation
of cardinality below 14 has never been returned, even across tens of thousands of runs
of GREEDY-KSEP-OPT2. Building on this strong empirical evidence, the minimum δ
used in our experiments is 14.

Figure 5 shows both timing and expected detriment results as the size of the expla-
nation function |efd| and maximum strategy cardinality k are varied. Note that a lower
expected detriment is better for the adversary, with zero representing no probability
of partner discovery by the reasoning agent. As the adversary is allowed larger and
larger strategies, its expected detriment smoothly decreases toward zero. Intuitively,
as the number of nontrivially-weighted explanation functions in efd increases, the ex-
pected detriment increases as well. This is a side-effect of a larger |efd| allowing the
reasoning agent to cover a larger swath of partner locations.

Recall that, as the maximum k increases, we must solve linear programs for each
δ ∈ {klow, k}. This is mirrored in the timing results in Figure 5, which assumes
klow = 14. As k increases, we see a near-linear increase in the total runtime of the
set of integer programs. Due to the reduced set L∗, we are able to solve dozens of
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Fig. 6. Expected number of caches found when the adversary uses our strategy instead of the current
state-of-the-art (left, lower is better). Relative improvement of the OAS strategy versus the current state-
of-the-art (right, higher is better). We assume the reasoning agent is using the Spatial Cultural Abductive
Reasoning Engine (SCARE) to provide information on cache locations.

integer programs in less than 800ms; were we to use the unreduced partner set L,
this would be intractable. Note that the runtime graph includes that of BUILD-STRAT
which always ran in under sixteen milliseconds.

OAS Performance with respect to Real-World Adversarial Strategy. Figure 6 compares the
expected number of caches found under the current, state-of-the-art—IED cache lo-
cations based on 21 months of real-world data from Baghdad, Iraq—against the OAS
strategy proposed in this article. We hold the cardinality of the adversary’s solution
(i.e., the number of possible caches) to 14 to match the real-world data. We assume
the reasoning agent uses the Spatial Cultural Abductive Reasoning Engine (SCARE)
introduced in Shakarian et al. [2009] to provide partner locations to these attacks.
SCARE is the state-of-the-art method for finding IED caches.

When tested against real-world adversaries based on real-world Baghdad data, OAS
significantly outperforms what adversaries have done so far in the real world (fortu-
nately this is balanced by later experiment results showing that MCA-LS and MCA-
GREEDY-MONO significantly outperform SCARE). The expected number of caches
found by SCARE against an opponent using OAS is significantly lower than against
present-day insurgents in Iraq. For instance, while SCARE (using a cutoff distance
of 100 meters) detects 1.6 of the 14 possible caches against a real-world adversary, it
is expected to detect only 0.11 of the caches against an adversary using OAS. This
roughly order of magnitude improvement is seen across all five cutoff distances, from
a minimum of approximately 7x at a cutoff distance of 200m to a maximum of over 31x
at a distance of 500m. Thus, OAS significantly improves the adversary’s performance.

6.2. MCA Implementation

First, we briefly discuss an implementation of the naive MCA algorithm discussed in
Section 5.2. Next, we provide promising results for the MCA-LS algorithm using the
prf reward function. Finally, we give results for the MCA-GREEDY-MONO using the
monotonic crf reward function, and qualitatively compare and contrast the results
from both algorithms.

MCA-Naive. The naive, exact solution to MCA (considering all subsets of L with
cardinality kB or more and picking the one which maximizes the expected agent ben-
efit) is inherently intractable. This approach has a complexity O(

(|L|
kB

)
), and is made

worse by the large magnitude of the set L. In our experimental setup, we typically
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Fig. 7. The average size of the strategy recommended by MCA-LS decreases as the distance cutoff increases.
For these experiments, the minimum cardinality for a given explanation E considered is efd was 14, which
gives us a natural lower bound on the expected size of a strategy. Note the convergence to this bound at
cutoff distances at and above 300 meters.

saw |L| > 20,000; as such, for even the trivially small kB = 3, we must enumerate
and rank over a trillion subsets. For any realistic value of kB, this approach is simply
unusable. Luckily, we will see that both MCA-LS and MCA-GREEDY-MONO provide
highly tractable and accurate alternatives.

MCA-LS. In sharp contrast to the naive algorithm described previously, the MCA-
LS algorithm provides (lower-)bounded approximate results in a tractable manner.
Interestingly, even though MCA-LS is an approximation algorithm, in our experiments
on real-world data from Baghdad using the prf reward function, the algorithm re-
turned strategies with an expected benefit of 1.0 on every run. Put simply, on our
practical test data, MCA-LS always completely maximized the expected benefit. This
significantly outperforms the lower-bound approximation ratio of 1/3. We would also
like to point out that this is the first implementation (to the best of our knowledge) of
the nonmonotonic submodular maximization approximation algorithm of Feige et al.
[2007].

Since the expected benefit was maximal for every strategy B returned, we move to
analyzing the particular structure of these strategies. Figure 7 shows a relationship
between the size |B|, the cutoff distance dist, and the cardinality of the expectation
function distribution |efd|. Recall that prf penalizes any strategy that does not com-
pletely cover its input set of observations; as such, intuitively, we see that MCA-LS
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Fig. 8. The runtime of MCA-LS decreases as the penalizing cutoff distance is relaxed. Note the relation to
Figure 7; intuitively, larger recommended strategies tend to take longer to compute.

returns larger strategies as the penalizing cutoff distance decreases. If the algorithm
can cover all possible partners across all expectation functions, it will not receive any
penalty. Still, even when dist is 100m, the algorithm returns B only roughly twice
the size as minimum-sized explanation found by GREEDY-KSEP-OPT2 (which, based
on the analysis of Shakarian et al. [2010], is very close to the minimum possible ex-
planation). As the cutoff dist increases, the algorithm returns strategies with sizes
converging, generally, to a baseline: the smallest-sized explanation found by the al-
gorithm of Shakarian et al. [2010], |E |. This is an intuitive soft lower bound; given
enough leeway from a large distance dist, a single point will cover all expected part-
ners. This is not a strict lower bound in that, given two extremely close observations
with similar expected partners, a single point may sufficiently cover both.

In Figure 8, we see results comparing overall computation time to both the distance
dist and the cardinality of efd. For more strict (i.e., smaller) values of dist, the algo-
rithm (which, under prf, is penalized for all uncovered observations across efd) must
spend more time forming a strategy B that minimizes penalization. Similarly, as the
distance constraint is loosened, the algorithm completes more quickly. Finally, an in-
crease in |efd| results in higher computational cost; as explained in Proposition 5.1,
this is due to an increase in F(efd), the time complexity of computing EXBrf(B, efd).
Comparing these results to Figure 7, we see that the runtime of MCA-LS is correlated
to the size of the returned strategy B.
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Fig. 9. Expected benefit of the strategy returned by MCA-GREEDY-MONO as the budget increases, with
|efd| = 10 (left) and |efd| = 100 (right). Note the decrease in expected benefit due to the increase in |efd|.
Similarly, note the increase in expected benefit given a larger cutoff distance.

MCA-GREEDY-MONO. As discussed in Section 5.3, MCA-GREEDY-MONO provides
tighter approximation bounds than MCA-LS at the cost of a more restrictive (mono-
tonic) reward function. For these experiments, we used the monotonic rf = crf. Recall
that a trivial solution to MCA given a monotonic reward function is B = L; as such,
MCA-GREEDY-MONO uses a budget B to limit the maximum size |B| � |L|. We varied
this parameter B ∈ {1, . . . , 28}.

Figure 9 shows the expected benefit EXBrf(B, efd) increases as the maximum al-
lowed |B| increases. In general, the expected benefit of B increases as the distance
constraint dist is relaxed. However, note the points with B ∈ {3, . . . , 9}; we see that
dist ≤ 100 performs better than dist > 100. We believe this is an artifact of our real-
world data. Finally, as |efd| increases, the expected benefit of B converges more slowly
to 1.0. This is intuitive, as a wider spread of possible partner positions will, in general,
require a larger |B| to provide coverage.

Figure 10 shows that the runtime of MCA-GREEDY-MONO increases as predicted by
Proposition 5.1. In detail, as we linearly increase budget B, we also linearly increase
the runtime of our F(efd) = EXBrf(B, efd). In turn, the overall runtime O(B · |L| · F(efd))
increases quadratically in B, for our specific reward function. Finally, note the increase
in runtime as we increase |efd| = 10 to |efd| = 100. Theoretically, this increases F(efd)
linearly; in fact, we see almost exactly a ten-fold increase in runtime given a tenfold
increase in |efd|.
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Fig. 10. Runtime of MCA-GREEDY-MONO as the budget increases, with |efd| = 10 (left) and |efd| = 100
(right). Note the increase in runtime due to the extra determinism of a larger efd.

MCA Algorithms and SCARE. We now compare the efficacy of the two MCA algorithms
proposed in this article to SCARE [Shakarian et al. 2009] which represents the cur-
rent state-of-the-art as far as IED cache detection is concerned. Again, our experi-
ments are based on real-world data from Baghdad, Iraq. For these experiments, we
average results across 100 runs of SCARE; as such, we hold |efd| = 100 static for the
MCA-based algorithms. Figure 11 plots the average number of predicted points within
500 meters of an actual cache for both MCA-LS and MCA-GREEDY-MONO. SCARE,
plotted as a horizontal line, predicts an average of 7.87 points within 500 meters of
caches. MCA-LS finds over twice as many points at low penalizing cutoff distances,
and steadily converges to SCARE’s baseline as the penalizing distance increases (as
expected). As shown earlier in Figure 7, MCA-LS tends to find larger strategies given
a smaller penalizing cutoff distance; in turn, these larger strategies yield more close
points to actual caches. MCA-GREEDY-MONO shows similar behavior; as we increase
the allowable budget (i.e., maximum strategy size), more points are within 500 meters
of a real-world cache location. Thus, MCA-LS and MCA-GREEDY-MONO both outper-
form SCARE, enabling more caches to be discovered.

We note that while the number of points in the strategy close to a real-world
cache location is higher in the MCA-based algorithms than SCARE, the fraction
of close points stays consistently close. SCARE returns a solution of size 14, with
approximately half (7.87/14 ≈ 56%) of these points within 500 meters of cache.
Compare this to, for instance, MCA-LS with a penalizing cutoff distance of 300 meters;
for these settings, the algorithm returns an average strategy size of 18, with 11 points
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Fig. 11. Expected number of points within 500 meters of an actual cache returned by MCA-LS (left) and
MCA-GREEDY-MONO (right) compared against an agent using SCARE (higher is better). Note that the
SCARE software always returns an explanation of size 14, while both MCA algorithms benefit from the
ability to adjust this explanation size.

(approximately 60%) within 500 meters of a cache location. This behavior is a product
of the strategy size flexibility built into the MCA-based algorithms, and is beneficial
to the reasoning agent. For example, assume the minimal solution to a problem is
of size 2 and the reasoning agent has a budget of size 4. Now assume SCARE finds
1/2 = 50% of the points near caches, while MCA-GREEDY-MONO finds 2/4 = 50% of its
points near caches. Both algorithms returned the same fraction of points near caches;
however, the reasoning agent will spend its budget of 4 resources more effectively
under MCA-GREEDY-MONO, instead of wasting two of its resources under the strategy
provided by SCARE.

7. RELATED WORK

Geospatial abduction was introduced in Shakarian et al. [2010] and used to infer a
set of partner locations from a set of observations, given a feasibility predicate and
an interval [α, β] ⊆ [0, 1]. The authors developed exact and approximate algorithms
for GAPs. In particular, no adversary was assumed to exist there. In this article,
we study the case of geospatial abduction where there is an explicit adversary who is
interested in ensuring that the agent does not detect the partner locations. This is
the case with real-world serial killers and insurgents who launch IED attacks. In this
article, we develop a game-theoretic framework for reasoning about the best strategy
that an adversary might adopt (based on minimizing the adversary’s detriment) and
the best strategy that the agent could adopt to counter the adversary’s strategy. All
this is uncharted territory and represents a novel contribution of this article. In fact,
everything from Section 3 onwards in this article is new.

Although abduction [Peirce 1955] has been studied in a variety of different
contexts—medicine [Peng 1986; Peng and Reggia 1990], fault diagnosis [Console et al.
1991], belief revision [Pagnucco 1996], database updates [Console et al. 1995; Kakas
and Mancarella 1990], and AI planning [do Lago Pereira and de Barros 2004]—we
are not aware of any work in abduction where an adversary selects a ground-truth
explanation with respect to a probability distribution over explanation functions that
an agent would consider. Additionally, we are not aware of any related work dealing
with the problem of an agent finding elements of an adversarially selected explanation
(with respect to a probability distribution). However, we do believe that many of the
techniques introduced here for adversarial geospatial abduction may be generalized to
other forms of abduction as well.
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In the field of operations research, the facility location problem [Stollsteimer 1963]
is a well-studied problem dealing with optimal placement of facilities in a plane, net-
work, or multidimensional space. The facilities must be positioned to optimize some
sort of distance to the “demand points”, most likely resembling consumers of the items
being produced at the facility. In Shakarian et al. [2010], the authors outline numerous
differences between facility location and geospatial abduction (difference in optimality
criteria, use of feasibility predicate, nonconvexitivity of covers, etc.), even when no ad-
versaries are present. However, facility location with adversaries has not really been
studied, and that is the focus of this article.

Similar motivation exists in the field of (multi-)agent security, where the central
idea is to protect a set of targets from adversaries. These games are typically modeled
on top of graphs, with agents and adversaries competing to protect or penetrate a set of
targets. Paruchuri et al. [2006] represent the adversary’s behavior through a probabil-
ity distribution over states, indicating the probability of that state being targeted; no
real graph structure is considered, much less a geospatial model. Agmon et al. [2008,
2009] consider an environment with more hidden information, and attempt to detect
adversarial penetrations across the routes (represented as paths on a graph) of pa-
trolling agents. Pita et al. [2009] solve Stackelberg (leader-follower) games under the
assumption of bounded reasoning rationality, again on a graph network. Dickerson
et al. [2010] explores protecting dynamic targets from rational adversaries on real-
world road networks.

8. CONCLUSION

Geospatial abduction was introduced in Shakarian et al. [2010] and used to infer a set
of partner locations from a set of observations, given a feasibility predicate and reals
α ≥ 0, β > 0. Shakarian et al. [2010] developed exact and approximate algorithms for
GAPs. In particular, no adversary was assumed to exist there. In this article, we study
the case of geospatial abduction where there is an explicit adversary who is interested
in ensuring that the agent does not detect the partner locations. This is the case with
real-world serial killers and insurgents who launch IED attacks. We develop a game-
theoretic framework for reasoning about the best strategy that an adversary might
adopt (based on minimizing the adversary’s detriment) and the best strategy that the
agent could adopt to counter the adversary’s strategy.

We consider the adversarial geospatial abduction problem to be a two-player game:
an agent (“good” guy) and an adversary (“bad” guy). The adversary is attempting to
cause certain observable events to occur (e.g., murders or IED attacks) but make it
hard to detect the associated set of partner locations (e.g., location of the serial killer’s
home/office, or the locations of weapons caches supporting the IED attacks). We use
an axiomatically-defined “reward function” to determine how similar two explanations
are to each other. We study the problems of finding the best response for an agent and
adversary to a mixed strategy (based on a probability distribution over explanations)
of the opponent. We formalize these problems as the Optimal Adversarial Strategy
(OAS) and Maximal Counter-Adversary strategy (MCA) problem. We show both OAS
and MCA to be NP-hard and provide exact and approximate methods for solving them.

When reasoning about the best possible strategy for the adversary, we present a
mixed-integer-programming-based algorithm and show that the MILP in question can
be greatly reduced through the elimination of many variables using the concept of a
δ-core explanation. Our experiments are carried out on real-world data about IED
attacks over a period of 21 months in Baghdad.

When reasoning about the best possible strategy for the adversary, we present two
algorithms. The MCA-LS algorithm is very general and leverages submodularity of re-
ward functions. The MCA-GREEDY-MONO algorithm assumes the reward function is
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monotonic. Both MCA-LS and MCA-GREEDY-MONO are highly accurate and have very
reasonable time frames. Though MCA-GREEDY-MONO is slightly faster than MCA-
LS, we found that on every single run, MCA-LS found the exact optimal benefit even
though its theoretical lower-bound approximation ratio is only 1/3, a truly remark-
able performance. As MCA-LS does not require any additional assumptions and as its
running time is only slightly slower than that of MCA-GREEDY-MONO, we believe this
algorithm has a slight advantage.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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